import os
import torch
import fire
import gradio as gr
from PIL import Image
from functools import partial
import cv2
import time
import numpy as np
from rembg import remove
from segment_anything import sam_model_registry, SamPredictor
import os
import sys
import numpy
import torch
import rembg
import threading
import urllib.request
from PIL import Image
from typing import Dict, Optional, Tuple, List
from dataclasses import dataclass
import huggingface_hub
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from mv_diffusion_30.models.unet_mv2d_condition import UNetMV2DConditionModel
from mv_diffusion_30.data.single_image_dataset import SingleImageDataset as MVDiffusionDataset
from mv_diffusion_30.pipelines.pipeline_mvdiffusion_image import MVDiffusionImagePipeline
from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler
from einops import rearrange
import numpy as np
from transformers import SamModel, SamProcessor
def save_image(tensor):
ndarr = tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
# pdb.set_trace()
im = Image.fromarray(ndarr)
return ndarr
weight_dtype = torch.float16
_TITLE = '''Wonder3D: Single Image to 3D using Cross-Domain Diffusion'''
_DESCRIPTION = '''
Generate consistent multi-view normals maps and color images.
The demo does not include the mesh reconstruction part, please visit
our github repo to get a textured mesh.
- 2024.12 We shift our ckpt to the a more powerful model [Wonder3D_Plus] that supports both orthogonal and perspective camera settings and further improves generalizability.
'''
_GPU_ID = 0
if not hasattr(Image, 'Resampling'):
Image.Resampling = Image
def sam_init():
model = SamModel.from_pretrained("facebook/sam-vit-large").to("cuda")
processor = SamProcessor.from_pretrained("facebook/sam-vit-large")
return model, processor
def sam_segment(sam_model, sam_processor, input_image, *bbox_coords):
input_points = [[[bbox_coords[2] - bbox_coords[0], bbox_coords[3] - bbox_coords[1]]]]
bbox = torch.tensor(bbox_coords, dtype=torch.float32)
bbox = bbox.unsqueeze(0).unsqueeze(0)
image = np.asarray(input_image)
start_time = time.time()
inputs = sam_processor(input_image, input_boxes=bbox, return_tensors="pt", do_resize=False).to("cuda")
outputs = sam_model(**inputs, multimask_output=False)
masks = sam_processor.image_processor.post_process_masks(outputs.pred_masks.cpu(),
inputs["original_sizes"].cpu(),
inputs["reshaped_input_sizes"].cpu(), )
print(f"SAM Time: {time.time() - start_time:.3f}s")
out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
out_image[:, :, :3] = image
out_image_bbox = out_image.copy()
foreground_mask = masks[-1][-1, -1, ...] * 1.
out_image_bbox[:, :, 3] = foreground_mask.cpu().detach().numpy().astype(np.uint8) * 255
torch.cuda.empty_cache()
return Image.fromarray(out_image_bbox, mode='RGBA')
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
def preprocess(sam_model, sam_processor, input_image, chk_group=None, segment=True, rescale=False):
RES = 1024
input_image.thumbnail([RES, RES], Image.Resampling.LANCZOS)
if chk_group is not None:
segment = "Background Removal" in chk_group
rescale = "Rescale" in chk_group
if segment:
image_rem = input_image.convert('RGBA')
image_nobg = remove(image_rem, alpha_matting=True)
arr = np.asarray(image_nobg)[:,:,-1]
x_nonzero = np.nonzero(arr.sum(axis=0))
y_nonzero = np.nonzero(arr.sum(axis=1))
x_min = int(x_nonzero[0].min())
y_min = int(y_nonzero[0].min())
x_max = int(x_nonzero[0].max())
y_max = int(y_nonzero[0].max())
input_image = sam_segment(sam_model, sam_processor, input_image.convert('RGB'), x_min, y_min, x_max, y_max)
# Rescale and recenter
if rescale:
image_arr = np.array(input_image)
in_w, in_h = image_arr.shape[:2]
out_res = min(RES, max(in_w, in_h))
ret, mask = cv2.threshold(np.array(input_image.split()[-1]), 0, 255, cv2.THRESH_BINARY)
x, y, w, h = cv2.boundingRect(mask)
max_size = max(w, h)
ratio = 0.75
side_len = int(max_size / ratio)
padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8)
center = side_len//2
padded_image[center-h//2:center-h//2+h, center-w//2:center-w//2+w] = image_arr[y:y+h, x:x+w]
rgba = Image.fromarray(padded_image).resize((out_res, out_res), Image.LANCZOS)
rgba_arr = np.array(rgba) / 255.0
rgb = rgba_arr[...,:3] * rgba_arr[...,-1:] + (1 - rgba_arr[...,-1:])
input_image = Image.fromarray((rgb * 255).astype(np.uint8))
else:
input_image = expand2square(input_image, (127, 127, 127, 0))
return input_image, input_image.resize((320, 320), Image.Resampling.LANCZOS)
def load_wonder3d_pipeline(cfg):
# Load scheduler, tokenizer and models.
# noise_scheduler = DDPMScheduler.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="scheduler")
image_encoder = CLIPVisionModelWithProjection.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="image_encoder", revision=cfg.revision)
feature_extractor = CLIPImageProcessor.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="feature_extractor", revision=cfg.revision)
vae = AutoencoderKL.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="vae", revision=cfg.revision)
unet = UNetMV2DConditionModel.from_pretrained_2d(cfg.pretrained_unet_path, subfolder="unet", revision=cfg.revision, **cfg.unet_from_pretrained_kwargs)
# unet.enable_xformers_memory_efficient_attention()
# Move text_encode and vae to gpu and cast to weight_dtype
image_encoder.to(dtype=weight_dtype)
vae.to(dtype=weight_dtype)
unet.to(dtype=weight_dtype)
pipeline = MVDiffusionImagePipeline(
image_encoder=image_encoder, feature_extractor=feature_extractor, vae=vae, unet=unet, safety_checker=None,
scheduler=DDIMScheduler.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="scheduler"),
**cfg.pipe_kwargs
)
if torch.cuda.is_available():
pipeline.to('cuda:0')
# sys.main_lock = threading.Lock()
return pipeline
from mv_diffusion_30.data.single_image_dataset import SingleImageDataset
def prepare_data(single_image, crop_size, input_camera_type):
dataset = SingleImageDataset(
root_dir = None,
num_views = 6,
img_wh=[256, 256],
bg_color='white',
crop_size=crop_size,
single_image=single_image,
load_cam_type=True,
cam_types=[input_camera_type]
)
return dataset[0]
def run_pipeline(pipeline, cfg, single_image, guidance_scale, steps, seed, crop_size, input_camera_type):
import pdb
# pdb.set_trace()
batch = prepare_data(single_image, crop_size, input_camera_type)
pipeline.set_progress_bar_config(disable=True)
seed = int(seed)
generator = torch.Generator(device=pipeline.unet.device).manual_seed(seed)
# repeat (2B, Nv, 3, H, W)
imgs_in = torch.cat([batch['imgs_in']]*2, dim=0).to(weight_dtype)
# (2B, Nv, Nce)
camera_embeddings = torch.cat([batch['camera_embeddings']]*2, dim=0).to(weight_dtype)
task_embeddings = torch.cat([batch['normal_task_embeddings'], batch['color_task_embeddings']], dim=0).to(weight_dtype)
camera_embeddings = torch.cat([camera_embeddings, task_embeddings], dim=-1).to(weight_dtype)
# (B*Nv, 3, H, W)
imgs_in = rearrange(imgs_in, "Nv C H W -> (Nv) C H W")
# (B*Nv, Nce)
# camera_embeddings = rearrange(camera_embeddings, "B Nv Nce -> (B Nv) Nce")
out = pipeline(
imgs_in, camera_embeddings, generator=generator, guidance_scale=guidance_scale,
num_inference_steps=steps,
output_type='pt', num_images_per_prompt=1, **cfg.pipe_validation_kwargs
).images
bsz = out.shape[0] // 2
normals_pred = out[:bsz]
images_pred = out[bsz:]
normals_pred = [save_image(normals_pred[i]) for i in range(bsz)]
images_pred = [save_image(images_pred[i]) for i in range(bsz)]
out = images_pred + normals_pred
return *out, images_pred, normals_pred
@dataclass
class TestConfig:
pretrained_model_name_or_path: str
pretrained_unet_path:str
revision: Optional[str]
validation_dataset: Dict
save_dir: str
seed: Optional[int]
validation_batch_size: int
dataloader_num_workers: int
local_rank: int
pipe_kwargs: Dict
pipe_validation_kwargs: Dict
unet_from_pretrained_kwargs: Dict
validation_guidance_scales: List[float]
validation_grid_nrow: int
camera_embedding_lr_mult: float
num_views: int
camera_embedding_type: str
pred_type: str # joint, or ablation
enable_xformers_memory_efficient_attention: bool
cond_on_normals: bool
cond_on_colors: bool
load_task: bool
def run_demo():
from utils.misc import load_config
from omegaconf import OmegaConf
# parse YAML config to OmegaConf
cfg = load_config("./configs/mvdiffusion-joint-plus.yaml")
# print(cfg)
schema = OmegaConf.structured(TestConfig)
cfg = OmegaConf.merge(schema, cfg)
pipeline = load_wonder3d_pipeline(cfg)
torch.set_grad_enabled(False)
pipeline.to(f'cuda:{_GPU_ID}')
sam_model, sam_processor = sam_init()
custom_theme = gr.themes.Soft(primary_hue="blue").set(
button_secondary_background_fill="*neutral_100",
button_secondary_background_fill_hover="*neutral_200")
custom_css = '''#disp_image {
text-align: center; /* Horizontally center the content */
}'''
with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + _TITLE)
gr.Markdown(_DESCRIPTION)
with gr.Row(variant='panel'):
with gr.Column(scale=1):
input_image = gr.Image(type='pil', image_mode='RGBA', height=320, label='Input image')
example_folder = os.path.join(os.path.dirname(__file__), "./example_images")
example_fns = [os.path.join(example_folder, example) for example in os.listdir(example_folder)]
gr.Examples(
examples=example_fns,
inputs=[input_image],
# outputs=[input_image],
cache_examples=False,
label='Examples (click one of the images below to start)',
examples_per_page=30
)
with gr.Column(scale=1):
processed_image = gr.Image(type='pil', label="Processed Image", interactive=False, height=320, image_mode='RGBA', elem_id="disp_image")
processed_image_highres = gr.Image(type='pil', image_mode='RGBA', visible=False)
with gr.Accordion('Advanced options', open=True):
with gr.Row():
with gr.Column():
input_processing = gr.CheckboxGroup(['Background Removal'],
label='Input Image Preprocessing',
value=['Background Removal'],
info='untick this, if masked image with alpha channel')
with gr.Column():
output_processing = gr.CheckboxGroup(['Background Removal'], label='Output Image Postprocessing', value=[])
with gr.Row():
with gr.Column():
scale_slider = gr.Slider(1, 5, value=2, step=1,
label='Classifier Free Guidance Scale')
with gr.Column():
steps_slider = gr.Slider(15, 100, value=50, step=1,
label='Number of Diffusion Inference Steps')
with gr.Row():
with gr.Column():
seed = gr.Number(42, label='Seed')
with gr.Column():
crop_size = gr.Number(192, label='Crop size')
with gr.Row():
camera_type = gr.Radio(
choices=[("Orthogonal Camera", "ortho"), ("Perspective Camera", "persp")],
value="ortho",
label="Camera Type"
)
# crop_size = 192
run_btn = gr.Button('Generate', variant='primary', interactive=True)
with gr.Row():
view_1 = gr.Image(interactive=False, height=240, show_label=False)
view_2 = gr.Image(interactive=False, height=240, show_label=False)
view_3 = gr.Image(interactive=False, height=240, show_label=False)
view_4 = gr.Image(interactive=False, height=240, show_label=False)
view_5 = gr.Image(interactive=False, height=240, show_label=False)
view_6 = gr.Image(interactive=False, height=240, show_label=False)
with gr.Row():
normal_1 = gr.Image(interactive=False, height=240, show_label=False)
normal_2 = gr.Image(interactive=False, height=240, show_label=False)
normal_3 = gr.Image(interactive=False, height=240, show_label=False)
normal_4 = gr.Image(interactive=False, height=240, show_label=False)
normal_5 = gr.Image(interactive=False, height=240, show_label=False)
normal_6 = gr.Image(interactive=False, height=240, show_label=False)
with gr.Row():
view_gallery = gr.Gallery(interactive=False, show_label=False, container=True, preview=True, allow_preview=False, height=1200)
normal_gallery = gr.Gallery(interactive=False, show_label=False, container=True, preview=True, allow_preview=False, height=1200)
run_btn.click(fn=partial(preprocess, sam_model, sam_processor),
inputs=[input_image, input_processing],
outputs=[processed_image_highres, processed_image], queue=True
).success(fn=partial(run_pipeline, pipeline, cfg),
inputs=[processed_image_highres, scale_slider, steps_slider, seed, crop_size, camera_type],
outputs=[view_1, view_2, view_3, view_4, view_5, view_6,
normal_1, normal_2, normal_3, normal_4, normal_5, normal_6,
view_gallery, normal_gallery]
)
demo.queue().launch(share=True, max_threads=80)
if __name__ == '__main__':
fire.Fire(run_demo)