File size: 13,706 Bytes
87f795e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21c7fd8
87f795e
911f625
87f795e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21c7fd8
87f795e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21c7fd8
87f795e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
911f625
 
87f795e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# A reimplemented version in public environments by Xiao Fu and Mu Hu

from typing import Any, Dict, Union

import torch
from torch.utils.data import DataLoader, TensorDataset
import numpy as np
from tqdm.auto import tqdm
from PIL import Image
from diffusers import (
    DiffusionPipeline,
    DDIMScheduler,
    AutoencoderKL,
)
from models.unet_2d_condition import UNet2DConditionModel
from diffusers.utils import BaseOutput
from transformers import CLIPTextModel, CLIPTokenizer
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
import torchvision.transforms.functional as TF
from torchvision.transforms import InterpolationMode

from utils.image_util import resize_max_res,chw2hwc,colorize_depth_maps
from utils.colormap import kitti_colormap
from utils.depth_ensemble import ensemble_depths
from utils.normal_ensemble import ensemble_normals
from utils.batch_size import find_batch_size
import cv2

class DepthNormalPipelineOutput(BaseOutput):
    """
    Output class for Marigold monocular depth prediction pipeline.

    Args:
        depth_np (`np.ndarray`):
            Predicted depth map, with depth values in the range of [0, 1].
        depth_colored (`PIL.Image.Image`):
            Colorized depth map, with the shape of [3, H, W] and values in [0, 1].
        normal_np (`np.ndarray`):
            Predicted normal map, with depth values in the range of [0, 1].
        normal_colored (`PIL.Image.Image`):
            Colorized normal map, with the shape of [3, H, W] and values in [0, 1].
        uncertainty (`None` or `np.ndarray`):
            Uncalibrated uncertainty(MAD, median absolute deviation) coming from ensembling.
    """
    depth_np: np.ndarray
    depth_colored: Image.Image
    normal_np: np.ndarray
    normal_colored: Image.Image
    uncertainty: Union[None, np.ndarray]

class DepthNormalEstimationPipeline(DiffusionPipeline):
    # two hyper-parameters
    latent_scale_factor = 0.18215

    def __init__(self,
                 unet:UNet2DConditionModel,
                 vae:AutoencoderKL,
                 scheduler:DDIMScheduler,
                 image_encoder:CLIPVisionModelWithProjection,
                 feature_extractor:CLIPImageProcessor,
                 ):
        super().__init__()
            
        self.register_modules(
            unet=unet,
            vae=vae,
            scheduler=scheduler,
            image_encoder=image_encoder,
            feature_extractor=feature_extractor,
        )
        self.img_embed = None  

    @torch.no_grad()
    def __call__(self,
                 input_image:Image,
                 denoising_steps: int = 10,
                 ensemble_size: int = 10,
                 guidance_scale: int = 1,
                 processing_res: int = 768,
                 match_input_res:bool =True,
                 batch_size:int = 0,
                 domain: str = "indoor",
                 color_map: str="Spectral",
                 show_progress_bar:bool = True,
                 ensemble_kwargs: Dict = None,
                 ) -> DepthNormalPipelineOutput:
        
        # inherit from thea Diffusion Pipeline
        device = self.device
        input_size = input_image.size
        
        # adjust the input resolution.
        if not match_input_res:
            assert (
                processing_res is not None                
            )," Value Error: `resize_output_back` is only valid with "
        
        assert processing_res >=0
        assert denoising_steps >=1
        assert ensemble_size >=1

        # --------------- Image Processing ------------------------
        # Resize image
        if processing_res >0:
            input_image = resize_max_res(
                input_image, max_edge_resolution=processing_res
            )
        
        # Convert the image to RGB, to 1. reomve the alpha channel.
        input_image = input_image.convert("RGB")
        image = np.array(input_image)

        # Normalize RGB Values.
        rgb = np.transpose(image,(2,0,1))
        rgb_norm = rgb / 255.0 * 2.0 - 1.0 # [0, 255] -> [-1, 1]
        rgb_norm = torch.from_numpy(rgb_norm).to(self.dtype)
        rgb_norm = rgb_norm.to(device)

        assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0
        
        # ----------------- predicting depth -----------------
        duplicated_rgb = torch.stack([rgb_norm] * ensemble_size)
        single_rgb_dataset = TensorDataset(duplicated_rgb)
        
        # find the batch size
        if batch_size>0:
            _bs = batch_size
        else:
            _bs = 1

        single_rgb_loader = DataLoader(single_rgb_dataset, batch_size=_bs, shuffle=False)
        
        # predicted the depth
        depth_pred_ls = []
        normal_pred_ls = []
        
        if show_progress_bar:
            iterable_bar = tqdm(
                single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False
            )
        else:
            iterable_bar = single_rgb_loader
        
        for batch in iterable_bar:
            (batched_image, )= batch  # here the image is still around 0-1

            depth_pred_raw, normal_pred_raw = self.single_infer(
                input_rgb=batched_image,
                num_inference_steps=denoising_steps,
                domain=domain,
                show_pbar=show_progress_bar,
            )
            depth_pred_ls.append(depth_pred_raw.detach().clone())
            normal_pred_ls.append(normal_pred_raw.detach().clone())
        
        depth_preds = torch.concat(depth_pred_ls, axis=0).squeeze()
        normal_preds = torch.concat(normal_pred_ls, axis=0).squeeze()
        torch.cuda.empty_cache()  # clear vram cache for ensembling

        # ----------------- Test-time ensembling -----------------
        if ensemble_size > 1:
            depth_pred, pred_uncert = ensemble_depths(
                depth_preds, **(ensemble_kwargs or {})
            )
            normal_pred = ensemble_normals(normal_preds)
        else:
            depth_pred = depth_preds
            normal_pred = normal_preds
            pred_uncert = None

        # ----------------- Post processing -----------------
        # Scale prediction to [0, 1]
        min_d = torch.min(depth_pred)
        max_d = torch.max(depth_pred)
        depth_pred = (depth_pred - min_d) / (max_d - min_d)
        
        # Convert to numpy
        depth_pred = depth_pred.cpu().numpy().astype(np.float32)
        normal_pred = normal_pred.cpu().numpy().astype(np.float32)

        # Resize back to original resolution
        if match_input_res:
            pred_img = Image.fromarray(depth_pred)
            pred_img = pred_img.resize(input_size)
            depth_pred = np.asarray(pred_img)
            normal_pred = cv2.resize(chw2hwc(normal_pred), input_size, interpolation = cv2.INTER_NEAREST)

        # Clip output range: current size is the original size
        depth_pred = depth_pred.clip(0, 1)
        normal_pred = normal_pred.clip(-1, 1)
    
        # Colorize
        depth_colored = colorize_depth_maps(
            depth_pred, 0, 1, cmap=color_map
        ).squeeze()  # [3, H, W], value in (0, 1)
        depth_colored = (depth_colored * 255).astype(np.uint8)
        depth_colored_hwc = chw2hwc(depth_colored)
        depth_colored_img = Image.fromarray(depth_colored_hwc)

        normal_colored = ((normal_pred + 1)/2 * 255).astype(np.uint8)
        normal_colored_img = Image.fromarray(normal_colored)
        
        return DepthNormalPipelineOutput(
            depth_np = depth_pred,
            depth_colored = depth_colored_img,
            normal_np = normal_pred,
            normal_colored = normal_colored_img,
            uncertainty=pred_uncert,
        )
    
    def __encode_img_embed(self, rgb):
        """
        Encode clip embeddings for img
        """
        clip_image_mean = torch.as_tensor(self.feature_extractor.image_mean)[:,None,None].to(device=self.device, dtype=self.dtype)
        clip_image_std = torch.as_tensor(self.feature_extractor.image_std)[:,None,None].to(device=self.device, dtype=self.dtype)

        img_in_proc = TF.resize((rgb +1)/2, 
            (self.feature_extractor.crop_size['height'], self.feature_extractor.crop_size['width']), 
            interpolation=InterpolationMode.BICUBIC, 
            antialias=True
        )
        # do the normalization in float32 to preserve precision
        img_in_proc = ((img_in_proc.float() - clip_image_mean) / clip_image_std).to(self.dtype)        
        img_embed = self.image_encoder(img_in_proc).image_embeds.unsqueeze(1).to(self.dtype)

        self.img_embed = img_embed

        
    @torch.no_grad()
    def single_infer(self,input_rgb:torch.Tensor,
                     num_inference_steps:int,
                     domain:str,
                     show_pbar:bool,):

        device = input_rgb.device

        # Set timesteps: inherit from the diffuison pipeline
        self.scheduler.set_timesteps(num_inference_steps, device=device) # here the numbers of the steps is only 10.
        timesteps = self.scheduler.timesteps  # [T]
        
        # encode image
        rgb_latent = self.encode_RGB(input_rgb)
        
        # Initial depth map (Guassian noise)
        geo_latent = torch.randn(rgb_latent.shape, device=device, dtype=self.dtype).repeat(2,1,1,1)
        rgb_latent = rgb_latent.repeat(2,1,1,1)

        # Batched img embedding
        if self.img_embed is None:
            self.__encode_img_embed(input_rgb)
        
        batch_img_embed = self.img_embed.repeat(
            (rgb_latent.shape[0], 1, 1)
        )  # [B, 1, 768]

        batch_img_embed = torch.cat((torch.zeros_like(batch_img_embed), batch_img_embed), dim=0)
        rgb_latent = torch.cat((torch.zeros_like(rgb_latent), rgb_latent), dim=0)

        # hybrid switcher 
        geo_class = torch.tensor([[0., 1.], [1, 0]], device=device, dtype=self.dtype)
        geo_embedding = torch.cat([torch.sin(geo_class), torch.cos(geo_class)], dim=-1)
        
        if domain == "indoor":
            domain_class = torch.tensor([[1., 0., 0]], device=device, dtype=self.dtype).repeat(2,1)
        elif domain == "outdoor":
            domain_class = torch.tensor([[0., 1., 0]], device=device, dtype=self.dtype).repeat(2,1)
        elif domain == "object":
            domain_class = torch.tensor([[0., 0., 1]], device=device, dtype=self.dtype).repeat(2,1)
        domain_embedding = torch.cat([torch.sin(domain_class), torch.cos(domain_class)], dim=-1)

        class_embedding = torch.cat((geo_embedding, domain_embedding), dim=-1)

        # Denoising loop
        if show_pbar:
            iterable = tqdm(
                enumerate(timesteps),
                total=len(timesteps),
                leave=False,
                desc=" " * 4 + "Diffusion denoising",
            )
        else:
            iterable = enumerate(timesteps)

        for i, t in iterable:
            unet_input = torch.cat((rgb_latent, geo_latent.repeat(2,1,1,1)), dim=1)
            # predict the noise residual
            noise_pred = self.unet(unet_input, t.repeat(4), encoder_hidden_states=batch_img_embed, class_labels=class_embedding.repeat(2,1)).sample  
            noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
            #guidance_scale = 3.
            guidance_scale = guidance_scale
            noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
        
            # compute the previous noisy sample x_t -> x_t-1
            geo_latent = self.scheduler.step(noise_pred, t, geo_latent).prev_sample

        geo_latent = geo_latent
        torch.cuda.empty_cache()

        depth = self.decode_depth(geo_latent[0][None])
        depth = torch.clip(depth, -1.0, 1.0)
        depth = (depth + 1.0) / 2.0
        
        normal = self.decode_normal(geo_latent[1][None])
        normal /= (torch.norm(normal, p=2, dim=1, keepdim=True)+1e-5)
        normal *= -1.

        return depth, normal
        
    
    def encode_RGB(self, rgb_in: torch.Tensor) -> torch.Tensor:
        """
        Encode RGB image into latent.

        Args:
            rgb_in (`torch.Tensor`):
                Input RGB image to be encoded.

        Returns:
            `torch.Tensor`: Image latent.
        """

        # encode
        h = self.vae.encoder(rgb_in)

        moments = self.vae.quant_conv(h)
        mean, logvar = torch.chunk(moments, 2, dim=1)
        # scale latent
        rgb_latent = mean * self.latent_scale_factor
        
        return rgb_latent
    
    def decode_depth(self, depth_latent: torch.Tensor) -> torch.Tensor:
        """
        Decode depth latent into depth map.

        Args:
            depth_latent (`torch.Tensor`):
                Depth latent to be decoded.

        Returns:
            `torch.Tensor`: Decoded depth map.
        """

        # scale latent
        depth_latent = depth_latent / self.latent_scale_factor
        # decode
        z = self.vae.post_quant_conv(depth_latent)
        stacked = self.vae.decoder(z)
        # mean of output channels
        depth_mean = stacked.mean(dim=1, keepdim=True)
        return depth_mean

    def decode_normal(self, normal_latent: torch.Tensor) -> torch.Tensor:
        """
        Decode normal latent into normal map.

        Args:
            normal_latent (`torch.Tensor`):
                Depth latent to be decoded.

        Returns:
            `torch.Tensor`: Decoded normal map.
        """

        # scale latent
        normal_latent = normal_latent / self.latent_scale_factor
        # decode
        z = self.vae.post_quant_conv(normal_latent)
        normal = self.vae.decoder(z)
        return normal