Spaces:
Runtime error
Runtime error
File size: 18,517 Bytes
8e0bf0b 9c130b3 8e0bf0b c32d0ce 8e0bf0b c32d0ce 8e0bf0b c32d0ce 8e0bf0b c32d0ce 8e0bf0b 826223e 8e0bf0b c32d0ce 8e0bf0b c32d0ce 8e0bf0b c32d0ce 8e0bf0b 5f0d3d8 c32d0ce 279855a c32d0ce 8e0bf0b c32d0ce 8e0bf0b c32d0ce 8e0bf0b c32d0ce 8e0bf0b c32d0ce 8e0bf0b 4e4a450 aa7a82a 904d41c cfc0ae6 9f7b69e 8e0bf0b 279855a 3324530 4e4a450 8e0bf0b cfc0ae6 8e0bf0b 6ce55a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 |
import functools
import os
import shutil
import sys
import git
import gradio as gr
import numpy as np
import torch as torch
from PIL import Image
from gradio_imageslider import ImageSlider
def process(
pipe,
path_input,
ensemble_size,
denoise_steps,
processing_res,
path_out_16bit=None,
path_out_fp32=None,
path_out_vis=None,
_input_3d_plane_near=None,
_input_3d_plane_far=None,
_input_3d_embossing=None,
_input_3d_filter_size=None,
_input_3d_frame_near=None,
):
if path_out_vis is not None:
return (
[path_out_16bit, path_out_vis],
[path_out_16bit, path_out_fp32, path_out_vis],
)
input_image = Image.open(path_input)
pipe_out = pipe(
input_image,
ensemble_size=ensemble_size,
denoising_steps=denoise_steps,
processing_res=processing_res,
batch_size=1 if processing_res == 0 else 0,
show_progress_bar=True,
)
depth_pred = pipe_out.depth_np
depth_colored = pipe_out.depth_colored
depth_16bit = (depth_pred * 65535.0).astype(np.uint16)
path_output_dir = os.path.splitext(path_input)[0] + "_output"
os.makedirs(path_output_dir, exist_ok=True)
name_base = os.path.splitext(os.path.basename(path_input))[0]
path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_depth_fp32.npy")
path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.png")
path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.png")
np.save(path_out_fp32, depth_pred)
Image.fromarray(depth_16bit).save(path_out_16bit, mode="I;16")
depth_colored.save(path_out_vis)
return (
[path_out_16bit, path_out_vis],
[path_out_16bit, path_out_fp32, path_out_vis],
)
def process_3d(
input_image,
files,
size_longest_px,
size_longest_cm,
filter_size,
plane_near,
plane_far,
embossing,
frame_thickness,
frame_near,
frame_far,
):
if input_image is None or len(files) < 1:
raise gr.Error("Please upload an image (or use examples) and compute depth first")
if plane_near >= plane_far:
raise gr.Error("NEAR plane must have a value smaller than the FAR plane")
def _process_3d(size_longest_px, filter_size, vertex_colors, scene_lights, output_model_scale=None):
image_rgb = input_image
image_depth = files[0]
image_rgb_basename, image_rgb_ext = os.path.splitext(image_rgb)
image_depth_basename, image_depth_ext = os.path.splitext(image_depth)
image_rgb_content = Image.open(image_rgb)
image_rgb_w, image_rgb_h = image_rgb_content.width, image_rgb_content.height
image_rgb_d = max(image_rgb_w, image_rgb_h)
image_new_w = size_longest_px * image_rgb_w // image_rgb_d
image_new_h = size_longest_px * image_rgb_h // image_rgb_d
image_rgb_new = image_rgb_basename + f"_{size_longest_px}" + image_rgb_ext
image_depth_new = image_depth_basename + f"_{size_longest_px}" + image_depth_ext
image_rgb_content.resize((image_new_w, image_new_h), Image.LANCZOS).save(
image_rgb_new
)
Image.open(image_depth).resize((image_new_w, image_new_h), Image.LANCZOS).save(
image_depth_new
)
path_glb, path_stl = extrude_depth_3d(
image_rgb_new,
image_depth_new,
output_model_scale=size_longest_cm * 10 if output_model_scale is None else output_model_scale,
filter_size=filter_size,
coef_near=plane_near,
coef_far=plane_far,
emboss=embossing / 100,
f_thic=frame_thickness / 100,
f_near=frame_near / 100,
f_back=frame_far / 100,
vertex_colors=vertex_colors,
scene_lights=scene_lights,
)
return path_glb, path_stl
path_viewer_glb, _ = _process_3d(256, filter_size, vertex_colors=False, scene_lights=True, output_model_scale=1)
path_files_glb, path_files_stl = _process_3d(size_longest_px, filter_size, vertex_colors=True, scene_lights=False)
# sanitize 3d viewer glb path to keep babylon.js happy
path_viewer_glb_sanitized = os.path.join(os.path.dirname(path_viewer_glb), "preview.glb")
if path_viewer_glb_sanitized != path_viewer_glb:
os.rename(path_viewer_glb, path_viewer_glb_sanitized)
path_viewer_glb = path_viewer_glb_sanitized
return path_viewer_glb, [path_files_glb, path_files_stl]
def run_demo_server(pipe):
process_pipe = functools.partial(process, pipe)
os.environ["GRADIO_ALLOW_FLAGGING"] = "never"
with gr.Blocks(
analytics_enabled=False,
title="Marigold Depth Estimation",
css="""
#download {
height: 118px;
}
.slider .inner {
width: 5px;
background: #FFF;
}
.viewport {
aspect-ratio: 4/3;
}
""",
) as demo:
gr.Markdown(
"""
<h1 align="center">Marigold Depth Estimation</h1>
<p align="center">
<a title="Website" href="https://marigoldmonodepth.github.io/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
</a>
<a title="arXiv" href="https://arxiv.org/abs/2312.02145" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
</a>
<a title="Github" href="https://github.com/prs-eth/marigold" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/github/stars/prs-eth/marigold?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
</a>
<a title="Social" href="https://twitter.com/antonobukhov1" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
</a>
</p>
<p align="justify">
Marigold is the new state-of-the-art depth estimator for images in the wild.
Upload your image into the <b>left</b> side, or click any of the <b>examples</b> below.
The result will be computed and appear on the <b>right</b> in the output comparison window.
<b style="color: red;">NEW</b>: Scroll down to the new 3D printing part of the demo!
</p>
"""
)
with gr.Row():
with gr.Column():
input_image = gr.Image(
label="Input Image",
type="filepath",
)
with gr.Accordion("Advanced options", open=False):
ensemble_size = gr.Slider(
label="Ensemble size",
minimum=1,
maximum=20,
step=1,
value=10,
)
denoise_steps = gr.Slider(
label="Number of denoising steps",
minimum=1,
maximum=20,
step=1,
value=10,
)
processing_res = gr.Radio(
[
("Native", 0),
("Recommended", 768),
],
label="Processing resolution",
value=768,
)
input_output_16bit = gr.File(
label="Predicted depth (16-bit)",
visible=False,
)
input_output_fp32 = gr.File(
label="Predicted depth (32-bit)",
visible=False,
)
input_output_vis = gr.File(
label="Predicted depth (red-near, blue-far)",
visible=False,
)
with gr.Row():
submit_btn = gr.Button(value="Compute Depth", variant="primary")
clear_btn = gr.Button(value="Clear")
with gr.Column():
output_slider = ImageSlider(
label="Predicted depth (red-near, blue-far)",
type="filepath",
show_download_button=True,
show_share_button=True,
interactive=False,
elem_classes="slider",
position=0.25,
)
files = gr.Files(
label="Depth outputs",
elem_id="download",
interactive=False,
)
demo_3d_header = gr.Markdown(
"""
<h3 align="center">3D Printing Depth Maps</h3>
<p align="justify">
This part of the demo uses Marigold depth maps estimated in the previous step to create a
3D-printable model. The models are watertight, with correct normals, and exported in the STL format.
We recommended creating the first model with the default parameters and iterating on it until the best
result (see Pro Tips below).
</p>
""",
render=False,
)
demo_3d = gr.Row(render=False)
with demo_3d:
with gr.Column():
with gr.Accordion("3D printing demo: Main options", open=True):
plane_near = gr.Slider(
label="Relative position of the near plane (between 0 and 1)",
minimum=0.0,
maximum=1.0,
step=0.001,
value=0.0,
)
plane_far = gr.Slider(
label="Relative position of the far plane (between near and 1)",
minimum=0.0,
maximum=1.0,
step=0.001,
value=1.0,
)
embossing = gr.Slider(
label="Embossing level",
minimum=0,
maximum=100,
step=1,
value=20,
)
with gr.Accordion("3D printing demo: Advanced options", open=False):
size_longest_px = gr.Slider(
label="Size (px) of the longest side",
minimum=256,
maximum=1024,
step=256,
value=512,
)
size_longest_cm = gr.Slider(
label="Size (cm) of the longest side",
minimum=1,
maximum=100,
step=1,
value=10,
)
filter_size = gr.Slider(
label="Size (px) of the smoothing filter",
minimum=1,
maximum=5,
step=2,
value=3,
)
frame_thickness = gr.Slider(
label="Frame thickness",
minimum=0,
maximum=100,
step=1,
value=5,
)
frame_near = gr.Slider(
label="Frame's near plane offset",
minimum=-100,
maximum=100,
step=1,
value=1,
)
frame_far = gr.Slider(
label="Frame's far plane offset",
minimum=1,
maximum=10,
step=1,
value=1,
)
with gr.Row():
submit_3d = gr.Button(value="Create 3D", variant="primary")
clear_3d = gr.Button(value="Clear 3D")
gr.Markdown(
"""
<h5 align="center">Pro Tips</h5>
<ol>
<li><b>Re-render with new parameters</b>: Click "Clear 3D" and then "Create 3D".</li>
<li><b>Adjust 3D scale and cut-off focus</b>: Set the frame's near plane offset to the
minimum and use 3D preview to evaluate depth scaling. Repeat until the scale is correct and
everything important is in the focus. Set the optimal value for frame's near
plane offset as a last step.</li>
<li><b>Increase details</b>: Decrease size of the smoothing filter (also increases noise).</li>
</ol>
"""
)
with gr.Column():
viewer_3d = gr.Model3D(
camera_position=(75.0, 90.0, 1.25),
elem_classes="viewport",
label="3D preview (low-res, relief highlight)",
interactive=False,
)
files_3d = gr.Files(
label="3D model outputs (high-res)",
elem_id="download",
interactive=False,
)
blocks_settings_depth = [ensemble_size, denoise_steps, processing_res]
blocks_settings_3d = [plane_near, plane_far, embossing, size_longest_px, size_longest_cm, filter_size,
frame_thickness, frame_near, frame_far]
blocks_settings = blocks_settings_depth + blocks_settings_3d
map_id_to_default = {b._id: b.value for b in blocks_settings}
inputs = [
input_image,
ensemble_size,
denoise_steps,
processing_res,
input_output_16bit,
input_output_fp32,
input_output_vis,
plane_near,
plane_far,
embossing,
filter_size,
frame_near,
]
outputs = [
submit_btn,
input_image,
output_slider,
files,
]
def submit_depth_fn(*args):
out = list(process_pipe(*args))
out = [gr.Button(interactive=False), gr.Image(interactive=False)] + out
return out
submit_btn.click(
fn=submit_depth_fn,
inputs=inputs,
outputs=outputs,
concurrency_limit=1,
)
gr.Examples(
fn=submit_depth_fn,
examples=[
[
"files/bee.jpg",
10, # ensemble_size
10, # denoise_steps
768, # processing_res
"files/bee_depth_16bit.png",
"files/bee_depth_fp32.npy",
"files/bee_depth_colored.png",
0.0, # plane_near
0.5, # plane_far
20, # embossing
3, # filter_size
0, # frame_near
],
],
inputs=inputs,
outputs=outputs,
cache_examples=True,
)
demo_3d_header.render()
demo_3d.render()
def clear_fn():
out = []
for b in blocks_settings:
out.append(map_id_to_default[b._id])
out += [
gr.Button(interactive=True),
gr.Button(interactive=True),
gr.Image(value=None, interactive=True),
None, None, None, None, None, None, None,
]
return out
clear_btn.click(
fn=clear_fn,
inputs=[],
outputs=blocks_settings + [
submit_btn,
submit_3d,
input_image,
input_output_16bit,
input_output_fp32,
input_output_vis,
output_slider,
files,
viewer_3d,
files_3d,
],
)
def submit_3d_fn(*args):
out = list(process_3d(*args))
out = [gr.Button(interactive=False)] + out
return out
submit_3d.click(
fn=submit_3d_fn,
inputs=[
input_image,
files,
size_longest_px,
size_longest_cm,
filter_size,
plane_near,
plane_far,
embossing,
frame_thickness,
frame_near,
frame_far,
],
outputs=[submit_3d, viewer_3d, files_3d],
concurrency_limit=1,
)
def clear_3d_fn():
return [gr.Button(interactive=True), None, None]
clear_3d.click(
fn=clear_3d_fn,
inputs=[],
outputs=[submit_3d, viewer_3d, files_3d],
)
demo.queue(
api_open=False,
).launch(
server_name="0.0.0.0",
server_port=7860,
)
def main():
REPO_URL = "https://github.com/lemonaddie/geowizard.git"
CHECKPOINT = "lemonaddie/Geowizard"
REPO_DIR = "geowizard"
if os.path.isdir(REPO_DIR):
shutil.rmtree(REPO_DIR)
repo = git.Repo.clone_from(REPO_URL, REPO_DIR)
sys.path.append(os.path.join(os.getcwd(), REPO_DIR))
+import spaces
from pipeline.depth_normal_pipeline_clip_cfg import DepthNormalEstimationPipeline
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
pipe = DepthNormalEstimationPipeline.from_pretrained(CHECKPOINT)
try:
import xformers
pipe.enable_xformers_memory_efficient_attention()
except:
pass # run without xformers
pipe = pipe.to(device)
+@spaces.GPU
run_demo_server(pipe)
if __name__ == "__main__":
main()
# 1
|