File size: 5,284 Bytes
7c4a89c
 
 
 
 
fc928e3
7c4a89c
 
 
 
 
 
 
fc928e3
 
 
 
 
 
 
 
93b7099
fc928e3
 
7c4a89c
fc928e3
7c4a89c
fc928e3
 
 
 
 
 
 
 
2038182
fc928e3
 
 
 
 
 
 
 
 
 
 
7c4a89c
fc928e3
 
 
 
2038182
fc928e3
 
7c4a89c
 
 
 
93b7099
fc928e3
 
7c4a89c
 
 
fc928e3
7c4a89c
 
fc928e3
 
 
 
 
 
7c4a89c
fc928e3
7c4a89c
fc928e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c4a89c
fc928e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c4a89c
 
fc928e3
 
 
 
 
 
 
 
 
7c4a89c
 
fc928e3
 
7c4a89c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import functools
import os
import shutil
import sys
import git

import gradio as gr
import numpy as np
import torch as torch
from PIL import Image

from gradio_imageslider import ImageSlider

import spaces

REPO_URL = "https://github.com/lemonaddie/geowizard.git"
CHECKPOINT = "lemonaddie/Geowizard"
REPO_DIR = "geowizard"
    
if os.path.isdir(REPO_DIR):
    shutil.rmtree(REPO_DIR)
    
repo = git.Repo.clone_from(REPO_URL, REPO_DIR)
sys.path.append(os.path.join(os.getcwd(), REPO_DIR))

from pipeline.depth_normal_pipeline_clip_cfg import DepthNormalEstimationPipeline

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")  
pipe = DepthNormalEstimationPipeline.from_pretrained(CHECKPOINT)
    
try:
    import xformers
    pipe.enable_xformers_memory_efficient_attention()
except:
    pass  # run without xformers

pipe = pipe.to(device)
#run_demo_server(pipe)

@spaces.GPU
def depth_normal(img,
                denoising_steps,
                ensemble_size,
                processing_res,
                guidance_scale,
                domain):
    img = img.resize((processing_res, processing_res), Image.Resampling.LANCZOS)
    pipe_out = pipe(
        img,
        denoising_steps=denoising_steps,
        ensemble_size=ensemble_size,
        processing_res=processing_res,
        batch_size=0,
        guidance_scale=guidance_scale,
        domain=domain,
        show_progress_bar=True,
    )

    depth_colored = pipe_out.depth_colored
    normal_colored = pipe_out.normal_colored
    
    return depth_colored, normal_colored



def run_demo():


    custom_theme = gr.themes.Soft(primary_hue="blue").set(
                    button_secondary_background_fill="*neutral_100",
                    button_secondary_background_fill_hover="*neutral_200")
    custom_css = '''#disp_image {
        text-align: center; /* Horizontally center the content */
    }'''

    with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo:
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown('# ' + _TITLE)
        gr.Markdown(_DESCRIPTION)
        with gr.Row(variant='panel'):
            with gr.Column(scale=1):
                input_image = gr.Image(type='pil', image_mode='RGBA', height=320, label='Input image', tool=None)

                example_folder = os.path.join(os.path.dirname(__file__), "./files")
                example_fns = [os.path.join(example_folder, example) for example in os.listdir(example_folder)]
                gr.Examples(
                    examples=example_fns,
                    inputs=[input_image],
                    # outputs=[input_image],
                    cache_examples=False,
                    label='Examples (click one of the images below to start)',
                    examples_per_page=30
                )
            with gr.Column(scale=1):

                with gr.Accordion('Advanced options', open=True):
                    with gr.Row():
                        
                        domain = gr.Radio(
                         [
                             ("Outdoor", "outdoor"),
                             ("Indoor", "indoor"),
                             ("Object", "object"),
                         ],
                         label="Data Domain",
                         value="indoor",
                     )
                        guidance_scale = gr.Slider(
                         label="Classifier Free Guidance Scale",
                         minimum=1,
                         maximum=5,
                         step=1,
                         value=3,
                     )
                        denoise_steps = gr.Slider(
                         label="Number of denoising steps",
                         minimum=1,
                         maximum=20,
                         step=1,
                         value=10,
                     )
                        ensemble_size = gr.Slider(
                         label="Ensemble size",
                         minimum=1,
                         maximum=15,
                         step=1,
                         value=1,
                     )
                        processing_res = gr.Radio(
                         [
                             ("Native", 0),
                             ("Recommended", 768),
                         ],
                         label="Processing resolution",
                         value=768,
                     )
                    

                run_btn = gr.Button('Generate', variant='primary', interactive=True)
        with gr.Row():
            depth = gr.Image(interactive=False, height=384, show_label=False)
        with gr.Row():
            normal = gr.Image(interactive=False, height=384, show_label=False)


        run_btn.success(fn=partial(depth_normal), 
                        inputs=[input_image, denoising_steps,
                                ensemble_size,
                                processing_res,
                                guidance_scale,
                                domain],
                        outputs=[depth, normal]
                        )
        demo.queue().launch(share=True, max_threads=80)


if __name__ == '__main__':
    fire.Fire(run_demo)