lemonaddie commited on
Commit
00a9186
·
verified ·
1 Parent(s): f3be028

Update app2.py

Browse files
Files changed (1) hide show
  1. app2.py +14 -14
app2.py CHANGED
@@ -29,8 +29,8 @@ import cv2
29
 
30
  import sys
31
  sys.path.append("../")
32
- #from models.depth_normal_pipeline_clip import DepthNormalEstimationPipeline
33
- from models.depth_normal_pipeline_clip_cfg import DepthNormalEstimationPipeline
34
  from utils.seed_all import seed_all
35
  import matplotlib.pyplot as plt
36
  from utils.de_normalized import align_scale_shift
@@ -54,8 +54,8 @@ sd_image_variations_diffusers_path = '.'
54
  image_encoder = CLIPVisionModelWithProjection.from_pretrained(sd_image_variations_diffusers_path, subfolder="image_encoder")
55
  feature_extractor = CLIPImageProcessor.from_pretrained(sd_image_variations_diffusers_path, subfolder="feature_extractor")
56
 
57
- #unet = UNet2DConditionModel.from_pretrained('./wocfg/unet_ema')
58
- unet = UNet2DConditionModel.from_pretrained('./cfg/unet_ema')
59
 
60
  pipe = DepthNormalEstimationPipeline(vae=vae,
61
  image_encoder=image_encoder,
@@ -77,7 +77,7 @@ def depth_normal(img,
77
  denoising_steps,
78
  ensemble_size,
79
  processing_res,
80
- guidance_scale,
81
  domain):
82
 
83
  #img = img.resize((processing_res, processing_res), Image.Resampling.LANCZOS)
@@ -87,7 +87,7 @@ def depth_normal(img,
87
  ensemble_size=ensemble_size,
88
  processing_res=processing_res,
89
  batch_size=0,
90
- guidance_scale=guidance_scale,
91
  domain=domain,
92
  show_progress_bar=True,
93
  )
@@ -151,13 +151,13 @@ def run_demo():
151
  label="Data Type (Must Select One matches your image)",
152
  value="indoor",
153
  )
154
- guidance_scale = gr.Slider(
155
- label="Classifier Free Guidance Scale",
156
- minimum=1,
157
- maximum=5,
158
- step=1,
159
- value=1,
160
- )
161
  denoising_steps = gr.Slider(
162
  label="Number of denoising steps (More stepes, better quality)",
163
  minimum=1,
@@ -194,7 +194,7 @@ def run_demo():
194
  inputs=[input_image, denoising_steps,
195
  ensemble_size,
196
  processing_res,
197
- guidance_scale,
198
  domain],
199
  outputs=[depth, normal]
200
  )
 
29
 
30
  import sys
31
  sys.path.append("../")
32
+ from models.depth_normal_pipeline_clip import DepthNormalEstimationPipeline
33
+ #from models.depth_normal_pipeline_clip_cfg import DepthNormalEstimationPipeline
34
  from utils.seed_all import seed_all
35
  import matplotlib.pyplot as plt
36
  from utils.de_normalized import align_scale_shift
 
54
  image_encoder = CLIPVisionModelWithProjection.from_pretrained(sd_image_variations_diffusers_path, subfolder="image_encoder")
55
  feature_extractor = CLIPImageProcessor.from_pretrained(sd_image_variations_diffusers_path, subfolder="feature_extractor")
56
 
57
+ unet = UNet2DConditionModel.from_pretrained('./wocfg/unet_ema')
58
+ #unet = UNet2DConditionModel.from_pretrained('./cfg/unet_ema')
59
 
60
  pipe = DepthNormalEstimationPipeline(vae=vae,
61
  image_encoder=image_encoder,
 
77
  denoising_steps,
78
  ensemble_size,
79
  processing_res,
80
+ #guidance_scale,
81
  domain):
82
 
83
  #img = img.resize((processing_res, processing_res), Image.Resampling.LANCZOS)
 
87
  ensemble_size=ensemble_size,
88
  processing_res=processing_res,
89
  batch_size=0,
90
+ #guidance_scale=guidance_scale,
91
  domain=domain,
92
  show_progress_bar=True,
93
  )
 
151
  label="Data Type (Must Select One matches your image)",
152
  value="indoor",
153
  )
154
+ # guidance_scale = gr.Slider(
155
+ # label="Classifier Free Guidance Scale",
156
+ # minimum=1,
157
+ # maximum=5,
158
+ # step=1,
159
+ # value=1,
160
+ # )
161
  denoising_steps = gr.Slider(
162
  label="Number of denoising steps (More stepes, better quality)",
163
  minimum=1,
 
194
  inputs=[input_image, denoising_steps,
195
  ensemble_size,
196
  processing_res,
197
+ #guidance_scale,
198
  domain],
199
  outputs=[depth, normal]
200
  )