lemonaddie commited on
Commit
0c69724
·
verified ·
1 Parent(s): 3848e72

Update models/depth_normal_pipeline_clip_cfg_1.py

Browse files
models/depth_normal_pipeline_clip_cfg_1.py CHANGED
@@ -73,12 +73,13 @@ class DepthNormalEstimationPipeline(DiffusionPipeline):
73
  @torch.no_grad()
74
  def __call__(self,
75
  input_image:Image,
76
- denosing_steps: int = 10,
77
  ensemble_size: int = 10,
78
  processing_res: int = 768,
79
  match_input_res:bool =True,
80
  batch_size:int = 0,
81
  domain: str = "indoor",
 
82
  color_map: str="Spectral",
83
  show_progress_bar:bool = True,
84
  ensemble_kwargs: Dict = None,
@@ -95,7 +96,7 @@ class DepthNormalEstimationPipeline(DiffusionPipeline):
95
  )," Value Error: `resize_output_back` is only valid with "
96
 
97
  assert processing_res >=0
98
- assert denosing_steps >=1
99
  assert ensemble_size >=1
100
 
101
  # --------------- Image Processing ------------------------
@@ -145,8 +146,9 @@ class DepthNormalEstimationPipeline(DiffusionPipeline):
145
 
146
  depth_pred_raw, normal_pred_raw = self.single_infer(
147
  input_rgb=batched_image,
148
- num_inference_steps=denosing_steps,
149
  domain=domain,
 
150
  show_pbar=show_progress_bar,
151
  )
152
  depth_pred_ls.append(depth_pred_raw.detach().clone())
@@ -230,6 +232,7 @@ class DepthNormalEstimationPipeline(DiffusionPipeline):
230
  def single_infer(self,input_rgb:torch.Tensor,
231
  num_inference_steps:int,
232
  domain:str,
 
233
  show_pbar:bool,):
234
 
235
  device = input_rgb.device
@@ -286,7 +289,7 @@ class DepthNormalEstimationPipeline(DiffusionPipeline):
286
  # predict the noise residual
287
  noise_pred = self.unet(unet_input, t.repeat(4), encoder_hidden_states=batch_img_embed, class_labels=class_embedding.repeat(2,1)).sample
288
  noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
289
- guidance_scale = 1.
290
  noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
291
 
292
  # compute the previous noisy sample x_t -> x_t-1
 
73
  @torch.no_grad()
74
  def __call__(self,
75
  input_image:Image,
76
+ denoising_steps: int = 10,
77
  ensemble_size: int = 10,
78
  processing_res: int = 768,
79
  match_input_res:bool =True,
80
  batch_size:int = 0,
81
  domain: str = "indoor",
82
+ guidance_scale: int = 3,
83
  color_map: str="Spectral",
84
  show_progress_bar:bool = True,
85
  ensemble_kwargs: Dict = None,
 
96
  )," Value Error: `resize_output_back` is only valid with "
97
 
98
  assert processing_res >=0
99
+ assert denoising_steps >=1
100
  assert ensemble_size >=1
101
 
102
  # --------------- Image Processing ------------------------
 
146
 
147
  depth_pred_raw, normal_pred_raw = self.single_infer(
148
  input_rgb=batched_image,
149
+ num_inference_steps=denoising_steps,
150
  domain=domain,
151
+ guidance_scale=guidance_scale,
152
  show_pbar=show_progress_bar,
153
  )
154
  depth_pred_ls.append(depth_pred_raw.detach().clone())
 
232
  def single_infer(self,input_rgb:torch.Tensor,
233
  num_inference_steps:int,
234
  domain:str,
235
+ guidance_scale:int,
236
  show_pbar:bool,):
237
 
238
  device = input_rgb.device
 
289
  # predict the noise residual
290
  noise_pred = self.unet(unet_input, t.repeat(4), encoder_hidden_states=batch_img_embed, class_labels=class_embedding.repeat(2,1)).sample
291
  noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
292
+ guidance_scale = guidance_scale
293
  noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
294
 
295
  # compute the previous noisy sample x_t -> x_t-1