Spaces:
Runtime error
Runtime error
lemonaddie
commited on
Update models/depth_normal_pipeline_clip_cfg_1.py
Browse files
models/depth_normal_pipeline_clip_cfg_1.py
CHANGED
@@ -73,12 +73,13 @@ class DepthNormalEstimationPipeline(DiffusionPipeline):
|
|
73 |
@torch.no_grad()
|
74 |
def __call__(self,
|
75 |
input_image:Image,
|
76 |
-
|
77 |
ensemble_size: int = 10,
|
78 |
processing_res: int = 768,
|
79 |
match_input_res:bool =True,
|
80 |
batch_size:int = 0,
|
81 |
domain: str = "indoor",
|
|
|
82 |
color_map: str="Spectral",
|
83 |
show_progress_bar:bool = True,
|
84 |
ensemble_kwargs: Dict = None,
|
@@ -95,7 +96,7 @@ class DepthNormalEstimationPipeline(DiffusionPipeline):
|
|
95 |
)," Value Error: `resize_output_back` is only valid with "
|
96 |
|
97 |
assert processing_res >=0
|
98 |
-
assert
|
99 |
assert ensemble_size >=1
|
100 |
|
101 |
# --------------- Image Processing ------------------------
|
@@ -145,8 +146,9 @@ class DepthNormalEstimationPipeline(DiffusionPipeline):
|
|
145 |
|
146 |
depth_pred_raw, normal_pred_raw = self.single_infer(
|
147 |
input_rgb=batched_image,
|
148 |
-
num_inference_steps=
|
149 |
domain=domain,
|
|
|
150 |
show_pbar=show_progress_bar,
|
151 |
)
|
152 |
depth_pred_ls.append(depth_pred_raw.detach().clone())
|
@@ -230,6 +232,7 @@ class DepthNormalEstimationPipeline(DiffusionPipeline):
|
|
230 |
def single_infer(self,input_rgb:torch.Tensor,
|
231 |
num_inference_steps:int,
|
232 |
domain:str,
|
|
|
233 |
show_pbar:bool,):
|
234 |
|
235 |
device = input_rgb.device
|
@@ -286,7 +289,7 @@ class DepthNormalEstimationPipeline(DiffusionPipeline):
|
|
286 |
# predict the noise residual
|
287 |
noise_pred = self.unet(unet_input, t.repeat(4), encoder_hidden_states=batch_img_embed, class_labels=class_embedding.repeat(2,1)).sample
|
288 |
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
|
289 |
-
guidance_scale =
|
290 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
|
291 |
|
292 |
# compute the previous noisy sample x_t -> x_t-1
|
|
|
73 |
@torch.no_grad()
|
74 |
def __call__(self,
|
75 |
input_image:Image,
|
76 |
+
denoising_steps: int = 10,
|
77 |
ensemble_size: int = 10,
|
78 |
processing_res: int = 768,
|
79 |
match_input_res:bool =True,
|
80 |
batch_size:int = 0,
|
81 |
domain: str = "indoor",
|
82 |
+
guidance_scale: int = 3,
|
83 |
color_map: str="Spectral",
|
84 |
show_progress_bar:bool = True,
|
85 |
ensemble_kwargs: Dict = None,
|
|
|
96 |
)," Value Error: `resize_output_back` is only valid with "
|
97 |
|
98 |
assert processing_res >=0
|
99 |
+
assert denoising_steps >=1
|
100 |
assert ensemble_size >=1
|
101 |
|
102 |
# --------------- Image Processing ------------------------
|
|
|
146 |
|
147 |
depth_pred_raw, normal_pred_raw = self.single_infer(
|
148 |
input_rgb=batched_image,
|
149 |
+
num_inference_steps=denoising_steps,
|
150 |
domain=domain,
|
151 |
+
guidance_scale=guidance_scale,
|
152 |
show_pbar=show_progress_bar,
|
153 |
)
|
154 |
depth_pred_ls.append(depth_pred_raw.detach().clone())
|
|
|
232 |
def single_infer(self,input_rgb:torch.Tensor,
|
233 |
num_inference_steps:int,
|
234 |
domain:str,
|
235 |
+
guidance_scale:int,
|
236 |
show_pbar:bool,):
|
237 |
|
238 |
device = input_rgb.device
|
|
|
289 |
# predict the noise residual
|
290 |
noise_pred = self.unet(unet_input, t.repeat(4), encoder_hidden_states=batch_img_embed, class_labels=class_embedding.repeat(2,1)).sample
|
291 |
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
|
292 |
+
guidance_scale = guidance_scale
|
293 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
|
294 |
|
295 |
# compute the previous noisy sample x_t -> x_t-1
|