Spaces:
Runtime error
Runtime error
lemonaddie
commited on
Create app2.py
Browse files
app2.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
import sys
|
5 |
+
import git
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import numpy as np
|
9 |
+
import torch as torch
|
10 |
+
from PIL import Image
|
11 |
+
|
12 |
+
from gradio_imageslider import ImageSlider
|
13 |
+
|
14 |
+
import spaces
|
15 |
+
|
16 |
+
import fire
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import os
|
20 |
+
import logging
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
import torch
|
24 |
+
from PIL import Image
|
25 |
+
from tqdm.auto import tqdm
|
26 |
+
import glob
|
27 |
+
import json
|
28 |
+
import cv2
|
29 |
+
|
30 |
+
import sys
|
31 |
+
sys.path.append("../")
|
32 |
+
from models.depth_normal_pipeline_clip import DepthNormalEstimationPipeline
|
33 |
+
from utils.seed_all import seed_all
|
34 |
+
import matplotlib.pyplot as plt
|
35 |
+
from dataloader.file_io import read_hdf5, align_normal, creat_uv_mesh
|
36 |
+
from utils.de_normalized import align_scale_shift
|
37 |
+
from utils.depth2normal import *
|
38 |
+
|
39 |
+
from diffusers import DiffusionPipeline, DDIMScheduler, AutoencoderKL
|
40 |
+
from models.unet_2d_condition import UNet2DConditionModel
|
41 |
+
|
42 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
43 |
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
44 |
+
import torchvision.transforms.functional as TF
|
45 |
+
from torchvision.transforms import InterpolationMode
|
46 |
+
|
47 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
48 |
+
pipe = DepthNormalEstimationPipeline.from_pretrained(CHECKPOINT)
|
49 |
+
|
50 |
+
try:
|
51 |
+
import xformers
|
52 |
+
pipe.enable_xformers_memory_efficient_attention()
|
53 |
+
except:
|
54 |
+
pass # run without xformers
|
55 |
+
|
56 |
+
pipe = pipe.to(device)
|
57 |
+
#run_demo_server(pipe)
|
58 |
+
|
59 |
+
@spaces.GPU
|
60 |
+
def depth_normal(img,
|
61 |
+
denoising_steps,
|
62 |
+
ensemble_size,
|
63 |
+
processing_res,
|
64 |
+
guidance_scale,
|
65 |
+
domain):
|
66 |
+
|
67 |
+
#img = img.resize((processing_res, processing_res), Image.Resampling.LANCZOS)
|
68 |
+
pipe_out = pipe(
|
69 |
+
img,
|
70 |
+
denoising_steps=denoising_steps,
|
71 |
+
ensemble_size=ensemble_size,
|
72 |
+
processing_res=processing_res,
|
73 |
+
batch_size=0,
|
74 |
+
guidance_scale=guidance_scale,
|
75 |
+
domain=domain,
|
76 |
+
show_progress_bar=True,
|
77 |
+
)
|
78 |
+
|
79 |
+
depth_colored = pipe_out.depth_colored
|
80 |
+
normal_colored = pipe_out.normal_colored
|
81 |
+
|
82 |
+
return depth_colored, normal_colored
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
def run_demo():
|
87 |
+
|
88 |
+
|
89 |
+
custom_theme = gr.themes.Soft(primary_hue="blue").set(
|
90 |
+
button_secondary_background_fill="*neutral_100",
|
91 |
+
button_secondary_background_fill_hover="*neutral_200")
|
92 |
+
custom_css = '''#disp_image {
|
93 |
+
text-align: center; /* Horizontally center the content */
|
94 |
+
}'''
|
95 |
+
|
96 |
+
_TITLE = '''GeoWizard: Unleashing the Diffusion Priors for 3D Geometry Estimation from a Single Image'''
|
97 |
+
_DESCRIPTION = '''
|
98 |
+
<div>
|
99 |
+
Generate consistent depth and normal from single image. High quality and rich details.
|
100 |
+
<a style="display:inline-block; margin-left: .5em" href='https://github.com/fuxiao0719/GeoWizard/'><img src='https://img.shields.io/github/stars/fuxiao0719/GeoWizard?style=social' /></a>
|
101 |
+
</div>
|
102 |
+
'''
|
103 |
+
_GPU_ID = 0
|
104 |
+
|
105 |
+
with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo:
|
106 |
+
with gr.Row():
|
107 |
+
with gr.Column(scale=1):
|
108 |
+
gr.Markdown('# ' + _TITLE)
|
109 |
+
gr.Markdown(_DESCRIPTION)
|
110 |
+
with gr.Row(variant='panel'):
|
111 |
+
with gr.Column(scale=1):
|
112 |
+
input_image = gr.Image(type='pil', image_mode='RGBA', height=320, label='Input image')
|
113 |
+
|
114 |
+
example_folder = os.path.join(os.path.dirname(__file__), "./files")
|
115 |
+
example_fns = [os.path.join(example_folder, example) for example in os.listdir(example_folder)]
|
116 |
+
gr.Examples(
|
117 |
+
examples=example_fns,
|
118 |
+
inputs=[input_image],
|
119 |
+
# outputs=[input_image],
|
120 |
+
cache_examples=False,
|
121 |
+
label='Examples (click one of the images below to start)',
|
122 |
+
examples_per_page=30
|
123 |
+
)
|
124 |
+
with gr.Column(scale=1):
|
125 |
+
|
126 |
+
with gr.Accordion('Advanced options', open=True):
|
127 |
+
with gr.Column():
|
128 |
+
|
129 |
+
domain = gr.Radio(
|
130 |
+
[
|
131 |
+
("Outdoor", "outdoor"),
|
132 |
+
("Indoor", "indoor"),
|
133 |
+
("Object", "object"),
|
134 |
+
],
|
135 |
+
label="Data Type (Must Select One matches your image)",
|
136 |
+
value="indoor",
|
137 |
+
)
|
138 |
+
guidance_scale = gr.Slider(
|
139 |
+
label="Classifier Free Guidance Scale",
|
140 |
+
minimum=1,
|
141 |
+
maximum=5,
|
142 |
+
step=1,
|
143 |
+
value=3,
|
144 |
+
)
|
145 |
+
denoising_steps = gr.Slider(
|
146 |
+
label="Number of denoising steps (More stepes, better quality)",
|
147 |
+
minimum=1,
|
148 |
+
maximum=50,
|
149 |
+
step=1,
|
150 |
+
value=20,
|
151 |
+
)
|
152 |
+
ensemble_size = gr.Slider(
|
153 |
+
label="Ensemble size (1 will be enough. More steps, higher accuracy)",
|
154 |
+
minimum=1,
|
155 |
+
maximum=15,
|
156 |
+
step=1,
|
157 |
+
value=1,
|
158 |
+
)
|
159 |
+
processing_res = gr.Radio(
|
160 |
+
[
|
161 |
+
("Native", 0),
|
162 |
+
("Recommended", 768),
|
163 |
+
],
|
164 |
+
label="Processing resolution",
|
165 |
+
value=768,
|
166 |
+
)
|
167 |
+
|
168 |
+
|
169 |
+
run_btn = gr.Button('Generate', variant='primary', interactive=True)
|
170 |
+
with gr.Row():
|
171 |
+
with gr.Column():
|
172 |
+
depth = gr.Image(interactive=False, show_label=False)
|
173 |
+
with gr.Column():
|
174 |
+
normal = gr.Image(interactive=False, show_label=False)
|
175 |
+
|
176 |
+
|
177 |
+
run_btn.click(fn=depth_normal,
|
178 |
+
inputs=[input_image, denoising_steps,
|
179 |
+
ensemble_size,
|
180 |
+
processing_res,
|
181 |
+
guidance_scale,
|
182 |
+
domain],
|
183 |
+
outputs=[depth, normal]
|
184 |
+
)
|
185 |
+
demo.queue().launch(share=True, max_threads=80)
|
186 |
+
|
187 |
+
|
188 |
+
if __name__ == '__main__':
|
189 |
+
fire.Fire(run_demo)
|
190 |
+
|