lemonaddie commited on
Commit
c98c2f9
·
verified ·
1 Parent(s): 0677e3d

Update app2.py

Browse files
Files changed (1) hide show
  1. app2.py +0 -35
app2.py CHANGED
@@ -30,8 +30,6 @@ import cv2
30
  import sys
31
  sys.path.append("../")
32
  from models.depth_normal_pipeline_clip import DepthNormalEstimationPipeline
33
- #from models.depth_normal_pipeline_clip_cfg import DepthNormalEstimationPipeline
34
- #from models.depth_normal_pipeline_clip_cfg_1 import DepthNormalEstimationPipeline as DepthNormalEstimationPipelineCFG
35
  from utils.seed_all import seed_all
36
  import matplotlib.pyplot as plt
37
  from utils.de_normalized import align_scale_shift
@@ -46,7 +44,6 @@ import torchvision.transforms.functional as TF
46
  from torchvision.transforms import InterpolationMode
47
 
48
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
49
- #pipe = DepthNormalEstimationPipeline.from_pretrained(CHECKPOINT)
50
 
51
  stable_diffusion_repo_path = '.'
52
  vae = AutoencoderKL.from_pretrained(stable_diffusion_repo_path, subfolder='vae')
@@ -56,7 +53,6 @@ image_encoder = CLIPVisionModelWithProjection.from_pretrained(sd_image_variation
56
  feature_extractor = CLIPImageProcessor.from_pretrained(sd_image_variations_diffusers_path, subfolder="feature_extractor")
57
 
58
  unet = UNet2DConditionModel.from_pretrained('./wocfg/unet_ema')
59
- unet_cfg = UNet2DConditionModel.from_pretrained('./cfg/unet_ema')
60
 
61
  pipe = DepthNormalEstimationPipeline(vae=vae,
62
  image_encoder=image_encoder,
@@ -64,13 +60,6 @@ pipe = DepthNormalEstimationPipeline(vae=vae,
64
  unet=unet,
65
  scheduler=scheduler)
66
 
67
- # pipe_cfg = DepthNormalEstimationPipelineCFG(vae=vae,
68
- # image_encoder=image_encoder,
69
- # feature_extractor=feature_extractor,
70
- # unet=unet_cfg,
71
- # scheduler=scheduler)
72
-
73
-
74
  try:
75
  import xformers
76
  pipe.enable_xformers_memory_efficient_attention()
@@ -78,8 +67,6 @@ except:
78
  pass # run without xformers
79
 
80
  pipe = pipe.to(device)
81
- #pipe_cfg = pipe_cfg.to(device)
82
- #run_demo_server(pipe)
83
 
84
  @spaces.GPU
85
  def depth_normal(img,
@@ -93,21 +80,6 @@ def depth_normal(img,
93
  seed = int(seed)
94
  torch.manual_seed(seed)
95
 
96
- #img = img.resize((processing_res, processing_res), Image.Resampling.LANCZOS)
97
-
98
- # if guidance_scale > 0:
99
- # pipe_out = pipe_cfg(
100
- # img,
101
- # denoising_steps=denoising_steps,
102
- # ensemble_size=ensemble_size,
103
- # processing_res=processing_res,
104
- # batch_size=0,
105
- # guidance_scale=guidance_scale,
106
- # domain=domain,
107
- # show_progress_bar=True,
108
- # )
109
-
110
- # else:
111
  pipe_out = pipe(
112
  img,
113
  denoising_steps=denoising_steps,
@@ -178,13 +150,6 @@ def run_demo():
178
  label="Data Type (Must Select One matches your image)",
179
  value="indoor",
180
  )
181
- # guidance_scale = gr.Slider(
182
- # label="Classifier Free Guidance Scale, 0 Recommended for no guidance",
183
- # minimum=0,
184
- # maximum=5,
185
- # step=1,
186
- # value=0,
187
- # )
188
  denoising_steps = gr.Slider(
189
  label="Number of denoising steps (More steps, better quality)",
190
  minimum=1,
 
30
  import sys
31
  sys.path.append("../")
32
  from models.depth_normal_pipeline_clip import DepthNormalEstimationPipeline
 
 
33
  from utils.seed_all import seed_all
34
  import matplotlib.pyplot as plt
35
  from utils.de_normalized import align_scale_shift
 
44
  from torchvision.transforms import InterpolationMode
45
 
46
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
47
 
48
  stable_diffusion_repo_path = '.'
49
  vae = AutoencoderKL.from_pretrained(stable_diffusion_repo_path, subfolder='vae')
 
53
  feature_extractor = CLIPImageProcessor.from_pretrained(sd_image_variations_diffusers_path, subfolder="feature_extractor")
54
 
55
  unet = UNet2DConditionModel.from_pretrained('./wocfg/unet_ema')
 
56
 
57
  pipe = DepthNormalEstimationPipeline(vae=vae,
58
  image_encoder=image_encoder,
 
60
  unet=unet,
61
  scheduler=scheduler)
62
 
 
 
 
 
 
 
 
63
  try:
64
  import xformers
65
  pipe.enable_xformers_memory_efficient_attention()
 
67
  pass # run without xformers
68
 
69
  pipe = pipe.to(device)
 
 
70
 
71
  @spaces.GPU
72
  def depth_normal(img,
 
80
  seed = int(seed)
81
  torch.manual_seed(seed)
82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
  pipe_out = pipe(
84
  img,
85
  denoising_steps=denoising_steps,
 
150
  label="Data Type (Must Select One matches your image)",
151
  value="indoor",
152
  )
 
 
 
 
 
 
 
153
  denoising_steps = gr.Slider(
154
  label="Number of denoising steps (More steps, better quality)",
155
  minimum=1,