ncoop57
Add some janky syntax highlighting via rich
321a2ed
raw
history blame
2.98 kB
import gradio as gr
from rich.console import Console
from rich.syntax import Syntax
from transformers import AutoModelForCausalLM, AutoTokenizer
# model_name = "flax-community/gpt-code-clippy-1.3B-apps-alldata"
model_name = "flax-community/gpt-code-clippy-125M-apps-alldata"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
console = Console(record=True)
def format_input(question, starter_code=""):
answer_type = (
"\nUse Call-Based format\n" if starter_code else "\nUse Standard Input format\n"
)
return f"\nQUESTION:\n{question}\n{starter_code}\n{answer_type}\nANSWER:\n"
def format_outputs(text):
formatted_text = Syntax(
text, "python", line_numbers=True, indent_guides=True, word_wrap=True
)
console.print(formatted_text)
return console.export_html(inline_styles=True)
def generate_solution(question, starter_code="", temperature=1.0, num_beams=1):
prompt = format_input(question, starter_code)
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
start = len(input_ids[0])
output = model.generate(
input_ids,
max_length=start + 200,
do_sample=True,
top_p=0.95,
pad_token_id=tokenizer.pad_token_id,
early_stopping=True,
temperature=temperature,
num_beams=int(num_beams),
no_repeat_ngram_size=None,
repetition_penalty=None,
num_return_sequences=None,
)
return format_outputs(
tokenizer.decode(output[0][start:], skip_special_tokens=True).strip()
)
_EXAMPLES = [
[
"""
Given a 2D list of size `m * n`. Your task is to find the sum of minimum value in each row.
For Example:
```python
[
[1, 2, 3, 4, 5], # minimum value of row is 1
[5, 6, 7, 8, 9], # minimum value of row is 5
[20, 21, 34, 56, 100] # minimum value of row is 20
]
```
So, the function should return `26` because sum of minimums is as `1 + 5 + 20 = 26`
""",
"",
0.8,
],
[
"""
# Personalized greeting
Create a function that gives a personalized greeting. This function takes two parameters: `name` and `owner`.
""",
"""
Use conditionals to return the proper message:
case| return
--- | ---
name equals owner | 'Hello boss'
otherwise | 'Hello guest'
def greet(name, owner):
""",
0.8,
],
]
inputs = [
gr.inputs.Textbox(placeholder="Define a problem here...", lines=7),
gr.inputs.Textbox(placeholder="Provide optional starter code...", lines=3),
gr.inputs.Slider(0.5, 1.5, 0.1, default=0.8, label="Temperature"),
gr.inputs.Slider(1, 4, 1, default=1, label="Beam size"),
]
outputs = [gr.outputs.HTML(label="Solution")]
gr.Interface(
generate_solution,
inputs=inputs,
outputs=outputs,
title="Code Clippy: Problem Solver",
examples=_EXAMPLES,
).launch(share=False)