arampacha's picture
reorganize model loading
6b904c9
raw
history blame
3.7 kB
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
# model_name = "flax-community/gpt-code-clippy-1.3B-apps-alldata"
model_name = "flax-community/gpt-code-clippy-125M-apps-alldata"
@st.cache(allow_output_mutation=True, max_entries=1)
def get_model():
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
return (model, tokenizer)
def format_input(question, starter_code=""):
answer_type = "\nUse Call-Based format\n" if starter_code else \
"\nUse Standard Input format\n"
return f"\nQUESTION:\n{question}\n{starter_code}\n{answer_type}\nANSWER:\n"
def generate_solution(model, tokenizer, question, starter_code="", temperature=1.0, num_beams=1):
prompt = format_input(question, starter_code)
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
start = len(input_ids[0])
output = model.generate(
input_ids,
max_length=start + 150,
do_sample=True,
top_p=0.95,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
early_stopping=True,
temperature=temperature,
num_beams=int(num_beams),
no_repeat_ngram_size=None,
repetition_penalty=None,
num_return_sequences=None,
)
return tokenizer.decode(output[0][start:], skip_special_tokens=True).strip()
_EXAMPLES = [
[
"""
Given a 2D list of size `m * n`. Your task is to find the sum of minimum value in each row.
For Example:
```python
[
[1, 2, 3, 4, 5], # minimum value of row is 1
[5, 6, 7, 8, 9], # minimum value of row is 5
[20, 21, 34, 56, 100] # minimum value of row is 20
]
```
So, the function should return `26` because sum of minimums is as `1 + 5 + 20 = 26`
""",
"",
0.8,
],
[
"""
# Personalized greeting
Create a function that gives a personalized greeting. This function takes two parameters: `name` and `owner`.
""",
"""
Use conditionals to return the proper message:
case| return
--- | ---
name equals owner | 'Hello boss'
otherwise | 'Hello guest'
def greet(name, owner):
""",
0.8,
],
]
def run():
st.set_page_config(
page_title="Code Clippy Problem Solver"
)
# sidebar
st.sidebar.title("Code Clippy")
st.sidebar.image(
"https://raw.githubusercontent.com/ncoop57/gpt-code-clippy/camera-ready/code_clippy_logo.jpg",
caption="(c) awesome Aimee Trevett",
)
st.sidebar.markdown("[Github](https://github.com/ncoop57/gpt-code-clippy)")
st.sidebar.markdown("### Controls:")
temperature = st.sidebar.slider(
"Temperature",
min_value=0.5,
max_value=1.5,
value=0.8,
step=0.1,
)
num_beams = st.sidebar.slider(
"Num beams",
min_value=1,
max_value=4,
step=1,
)
# main body
model, tokenizer = get_model()
question = st.text_input(
"Problem: ",
value="A function that can greet user by name. Given a name it should say hello to user.",
help="Text description of the coding problem to be solved",
)
starter_code = st.text_input(
"Started code: ",
value="def greet(name):",
help="Optional starter code"
)
submit_button = st.button("Solve")
if submit_button:
st.text("Solution:")
output = generate_solution(model, tokenizer, question, starter_code, temperature, num_beams)
st.code(output, language="python")
if __name__=="__main__":
run()