Spaces:
Runtime error
Runtime error
add clip-base app
Browse files- app.py +81 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import jax
|
4 |
+
import streamlit as st
|
5 |
+
import transformers
|
6 |
+
from huggingface_hub import snapshot_download
|
7 |
+
from transformers import AutoTokenizer
|
8 |
+
import torch
|
9 |
+
from torchvision.io import ImageReadMode, read_image
|
10 |
+
|
11 |
+
|
12 |
+
LOCAL_PATH = snapshot_download("flax-community/medclip")
|
13 |
+
sys.path.append(LOCAL_PATH)
|
14 |
+
|
15 |
+
from src.modeling_medclip import FlaxMedCLIP
|
16 |
+
|
17 |
+
def prepare_image(image_path, model):
|
18 |
+
image = read_image(image_path, mode=ImageReadMode.RGB)
|
19 |
+
preprocess = Transform(model.config.vision_config.image_size)
|
20 |
+
preprocess = torch.jit.script(preprocess)
|
21 |
+
preprocessed_image = preprocess(image)
|
22 |
+
pixel_values = torch.stack([preprocessed_image]).permute(0, 2, 3, 1).numpy()
|
23 |
+
return pixel_values
|
24 |
+
|
25 |
+
def prepare_text(text, tokenizer):
|
26 |
+
return tokenizer(text, return_tensors="np")
|
27 |
+
|
28 |
+
def save_file_to_disk(uplaoded_file):
|
29 |
+
temp_file = os.path.join("/tmp", uplaoded_file.name)
|
30 |
+
with open(temp_file, "wb") as f:
|
31 |
+
f.write(uploaded_file.getbuffer())
|
32 |
+
return temp_file
|
33 |
+
@st.cache(
|
34 |
+
hash_funcs={
|
35 |
+
transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast: id,
|
36 |
+
FlaxHybridCLIP: id,
|
37 |
+
},
|
38 |
+
show_spinner=False
|
39 |
+
)
|
40 |
+
def load_tokenizer_and_model():
|
41 |
+
# load the saved model
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained("allenai/scibert_scivocab_uncased")
|
43 |
+
model = FlaxHybridCLIP.from_pretrained(LOCAL_PATH)
|
44 |
+
return tokenizer, model
|
45 |
+
|
46 |
+
def run_inference(image_path, text, model, tokenizer):
|
47 |
+
pixel_values = prepare_image(image_path, model)
|
48 |
+
input_text = prepare_text(text, tokenizer)
|
49 |
+
model_output = model(
|
50 |
+
input_text["input_ids"],
|
51 |
+
pixel_values,
|
52 |
+
attention_mask=input_text["attention_mask"],
|
53 |
+
train=False,
|
54 |
+
return_dict=True,
|
55 |
+
)
|
56 |
+
logits = model_output["logits_per_image"]
|
57 |
+
score = jax.nn.sigmoid(logits)[0][0]
|
58 |
+
return score
|
59 |
+
|
60 |
+
tokenizer, model = load_tokenizer_and_model()
|
61 |
+
st.title("Caption Scoring")
|
62 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["png", "jpg"])
|
63 |
+
text_input = st.text_input("Type a caption")
|
64 |
+
if uploaded_file is not None and text_input:
|
65 |
+
local_image_path = None
|
66 |
+
try:
|
67 |
+
local_image_path = save_file_to_disk(uploaded_file)
|
68 |
+
score = run_inference(local_image_path, text_input, model, tokenizer).tolist()
|
69 |
+
st.image(
|
70 |
+
uploaded_file,
|
71 |
+
caption=text_input,
|
72 |
+
width=None,
|
73 |
+
use_column_width=None,
|
74 |
+
clamp=False,
|
75 |
+
channels="RGB",
|
76 |
+
output_format="auto",
|
77 |
+
)
|
78 |
+
st.write(f"## Score: {score:.2f}")
|
79 |
+
finally:
|
80 |
+
if local_image_path:
|
81 |
+
os.remove(local_image_path)
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
flax==0.3.4
|
2 |
+
huggingface-hub==0.0.12
|
3 |
+
jax==0.2.17
|
4 |
+
streamlit==0.84.1
|
5 |
+
torch==1.9.0
|
6 |
+
torchvision==0.10.0
|
7 |
+
transformers==4.8.2
|
8 |
+
watchdog==2.1.3
|