File size: 8,578 Bytes
54dc7b4
324f080
 
54dc7b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
652973c
324f080
54dc7b4
 
 
324f080
 
54dc7b4
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from apps import article, mic
import streamlit as st
from session import _get_state
from multiapp import MultiApp

# from io import BytesIO
# from apps.utils import read_markdown
# from apps import article
# import streamlit as st
# import pandas as pd
# import os
# import numpy as np
# from streamlit import caching
# from PIL import Image
# from model.flax_clip_vision_mbart.modeling_clip_vision_mbart import (
#     FlaxCLIPVisionMBartForConditionalGeneration,
# )
# import matplotlib.pyplot as plt
# from mtranslate import translate


# from session import _get_state

# state = _get_state()


# @st.cache
# def load_model(ckpt):
#     return FlaxCLIPVisionMBartForConditionalGeneration.from_pretrained(ckpt)


# tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50")

# language_mapping = {
#     "en": "en_XX",
#     "de": "de_DE",
#     "fr": "fr_XX",
#     "es": "es_XX"
# }

# code_to_name = {
#     "en": "English",
#     "fr": "French",
#     "de": "German",
#     "es": "Spanish",
# }

# @st.cache
# def generate_sequence(pixel_values, lang_code, num_beams, temperature, top_p, do_sample, top_k, max_length):
#     lang_code = language_mapping[lang_code]
#     output_ids = state.model.generate(input_ids=pixel_values, forced_bos_token_id=tokenizer.lang_code_to_id[lang_code], max_length=max_length, num_beams=num_beams, temperature=temperature, top_p = top_p, top_k=top_k, do_sample=do_sample)
#     print(output_ids)
#     output_sequence = tokenizer.batch_decode(output_ids[0], skip_special_tokens=True, max_length=max_length)
#     return output_sequence


# checkpoints = ["./ckpt/ckpt-51999"]  # TODO: Maybe add more checkpoints?
# dummy_data = pd.read_csv("reference.tsv", sep="\t")


# st.sidebar.title("Generation Parameters")
# # max_length = st.sidebar.number_input("Max Length", min_value=16, max_value=128, value=64, step=1, help="The maximum length of sequence to be generated.")
# max_length = 64
# do_sample = st.sidebar.checkbox("Sample", value=False, help="Sample from the model instead of using beam search.")
# top_k = st.sidebar.number_input("Top K", min_value=10, max_value=200, value=50, step=1, help="The number of highest probability vocabulary tokens to keep for top-k-filtering.")
# num_beams = st.sidebar.number_input(label="Number of Beams", min_value=2, max_value=10, value=4, step=1, help="Number of beams to be used in beam search.")
# temperature = st.sidebar.select_slider(label="Temperature", options = list(np.arange(0.0,1.1, step=0.1)), value=1.0, help ="The value used to module the next token probabilities.", format_func=lambda x: f"{x:.2f}")
# top_p = st.sidebar.select_slider(label = "Top-P", options = list(np.arange(0.0,1.1, step=0.1)),value=1.0, help="Nucleus Sampling : If set to float < 1, only the most probable tokens with probabilities that add up to :obj:`top_p` or higher are kept for generation.", format_func=lambda x: f"{x:.2f}")
# if st.sidebar.button("Clear All Cache"):
#     caching.clear_cache()
# image_col, intro_col = st.beta_columns([3, 8])
# image_col.image("./misc/mic-logo.png", use_column_width="always")
# intro_col.write(read_markdown("intro.md"))

# with st.beta_expander("Usage"):
#     st.markdown(read_markdown("usage.md"))

# with st.beta_expander("Article"):
#     st.write(read_markdown("abstract.md"))
#     st.write("## Methodology")
#     st.image(
#         "./misc/Multilingual-IC.png"
#     )
#     st.markdown(read_markdown("pretraining.md"))
#     st.write(read_markdown("challenges.md"))
#     st.write(read_markdown("social_impact.md"))
#     st.write(read_markdown("bias.md"))

#     col1, col2, col3, col4 = st.beta_columns([0.5,2.5,2.5,0.5])
#     with col2:
#         st.image("./misc/examples/female_dev_1.jpg", width=350, caption = 'German Caption: <PERSON> arbeitet an einem Computer.', use_column_width='always')
#     with col3:
#         st.image("./misc/examples/female_doctor.jpg", width=350, caption = 'English Caption: A portrait of <PERSON>, a doctor who specializes in health care.', use_column_width='always')

#     col1, col2, col3, col4 = st.beta_columns([0.5,2.5,2.5,0.5])
#     with col2:
#         st.image("./misc/examples/female_doctor_1.jpg", width=350, caption = 'Spanish Caption: El Dr. <PERSON> es un estudiante de posgrado.', use_column_width='always')
#     with col3:
#         st.image("./misc/examples/women_cricket.jpg", width=350, caption = 'English Caption: <PERSON> of India bats against <PERSON> of Australia during the first Twenty20 match between India and Australia at Indian Bowl Stadium in New Delhi on Friday. - PTI', use_column_width='always')

#     col1, col2, col3, col4 = st.beta_columns([0.5,2.5,2.5,0.5])
#     with col2:
#         st.image("./misc/examples/female_dev_2.jpg", width=350, caption = "French Caption: Un écran d'ordinateur avec un écran d'ordinateur ouvert.", use_column_width='always')
#     with col3:
#         st.image("./misc/examples/female_biker_resized.jpg", width=350, caption = 'German Caption: <PERSON> auf dem Motorrad von <PERSON>.', use_column_width='always')

#     st.write(read_markdown("future_scope.md"))
#     st.write(read_markdown("references.md"))
#     # st.write(read_markdown("checkpoints.md"))
#     st.write(read_markdown("acknowledgements.md"))

# if state.model is None:
#     with st.spinner("Loading model..."):
#         state.model = load_model(checkpoints[0])

# first_index = 25
# # Init Session State
# if state.image_file is None:
#     state.image_file = dummy_data.loc[first_index, "image_file"]
#     state.caption = dummy_data.loc[first_index, "caption"].strip("- ")
#     state.lang_id = dummy_data.loc[first_index, "lang_id"]

#     image_path = os.path.join("images", state.image_file)
#     image = plt.imread(image_path)
#     state.image = image

# if st.button("Get a random example", help="Get a random example from one of the seeded examples."):
#     sample = dummy_data.sample(1).reset_index()
#     state.image_file = sample.loc[0, "image_file"]
#     state.caption = sample.loc[0, "caption"].strip("- ")
#     state.lang_id = sample.loc[0, "lang_id"]

#     image_path = os.path.join("images", state.image_file)
#     image = plt.imread(image_path)
#     state.image = image

# transformed_image = get_transformed_image(state.image)

# new_col1, new_col2 = st.beta_columns([5,5])

# # Display Image
# new_col1.image(state.image, use_column_width="always")
# # Display Reference Caption
# with new_col1.beta_expander("Reference Caption"):
#     st.write("**Reference Caption**: " + state.caption)
#     st.markdown(
#         f"""**English Translation**: {state.caption if state.lang_id == "en" else translate(state.caption, 'en')}"""
#     )

# # Select Language
# options = list(code_to_name.keys())
# lang_id = new_col2.selectbox(
#     "Language",
#     index=options.index(state.lang_id),
#     options=options,
#     format_func=lambda x: code_to_name[x],
#     help="The language in which caption is to be generated."
# )

# sequence = ['']
# if new_col2.button("Generate Caption", help="Generate a caption in the specified language."):
#     with st.spinner("Generating Sequence..."):
#         sequence = generate_sequence(transformed_image, lang_id, num_beams, temperature, top_p, do_sample, top_k, max_length)
# # print(sequence)

# if sequence!=['']:
#     new_col2.write(
#         "**Generated Caption**: "+sequence[0]
#     )

#     new_col2.write(
#         "**English Translation**: "+ sequence[0] if lang_id=="en" else translate(sequence[0])
#     )

def main():
    state = _get_state()
    st.set_page_config(
        page_title="Multilingual Image Captioning",
        layout="wide",
        initial_sidebar_state="collapsed",
        page_icon="./misc/mic-logo.png",
    )

    st.title("Multilingual Image Captioning")
    st.write(
        "[Bhavitvya Malik](https://huggingface.co/bhavitvyamalik), [Gunjan Chhablani](https://huggingface.co/gchhablani)"
    )

    st.sidebar.title("Multilingual Image Captioning")
    logo = st.sidebar.image("./misc/mic-logo.png")
    st.sidebar.write("Multilingual Image Captioning addresses the challenge of caption generation for an image in a multilingual setting. Here, we fuse CLIP Vision transformer into mBART50 and perform training on translated version of Conceptual-12M dataset. Please use the radio buttons below to navigate.")
    app = MultiApp(state)
    app.add_app("Article", article.app)
    app.add_app("Multilingual Image Captioning", mic.app)
    # app.add_app("Mask Filling", mlm.app)
    app.run()
    state.sync()

if __name__ == "__main__":
    main()