gchhablani's picture
Change layout
652973c
raw
history blame
6.18 kB
from io import BytesIO
import streamlit as st
import pandas as pd
import json
import os
import numpy as np
from streamlit import caching
from PIL import Image
from model.flax_clip_vision_mbart.modeling_clip_vision_mbart import (
FlaxCLIPVisionMBartForConditionalGeneration,
)
from transformers import MBart50TokenizerFast
from utils import (
get_transformed_image,
)
import matplotlib.pyplot as plt
from mtranslate import translate
from session import _get_state
state = _get_state()
@st.cache
def load_model(ckpt):
return FlaxCLIPVisionMBartForConditionalGeneration.from_pretrained(ckpt)
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50")
language_mapping = {
"en": "en_XX",
"de": "de_DE",
"fr": "fr_XX",
"es": "es_XX"
}
code_to_name = {
"en": "English",
"fr": "French",
"de": "German",
"es": "Spanish",
}
@st.cache
def generate_sequence(pixel_values, lang_code, num_beams, temperature, top_p, do_sample, top_k, max_length):
lang_code = language_mapping[lang_code]
output_ids = state.model.generate(input_ids=pixel_values, forced_bos_token_id=tokenizer.lang_code_to_id[lang_code], max_length=max_length, num_beams=num_beams, temperature=temperature, top_p = top_p, top_k=top_k, do_sample=do_sample)
print(output_ids)
output_sequence = tokenizer.batch_decode(output_ids[0], skip_special_tokens=True, max_length=max_length)
return output_sequence
def read_markdown(path, parent="./sections/"):
with open(os.path.join(parent, path)) as f:
return f.read()
checkpoints = ["./ckpt/ckpt-49499"] # TODO: Maybe add more checkpoints?
dummy_data = pd.read_csv("reference.tsv", sep="\t")
st.set_page_config(
page_title="Multilingual Image Captioning",
layout="wide",
initial_sidebar_state="collapsed",
page_icon="./misc/mic-logo.png",
)
st.title("Multilingual Image Captioning")
st.write(
"[Bhavitvya Malik](https://huggingface.co/bhavitvyamalik), [Gunjan Chhablani](https://huggingface.co/gchhablani)"
)
st.sidebar.title("Generation Parameters")
max_length = st.sidebar.number_input("Max Length", min_value=16, max_value=128, value=64, step=1, help="The maximum length of sequence to be generated.")
do_sample = st.sidebar.checkbox("Sample", value=False, help="Sample from the model instead of using beam search.")
top_k = st.sidebar.number_input("Top K", min_value=10, max_value=200, value=50, step=1, help="The number of highest probability vocabulary tokens to keep for top-k-filtering.")
num_beams = st.sidebar.number_input(label="Number of Beams", min_value=2, max_value=10, value=4, step=1, help="Number of beams to be used in beam search.")
temperature = st.sidebar.select_slider(label="Temperature", options = list(np.arange(0.0,1.1, step=0.1)), value=1.0, help ="The value used to module the next token probabilities.", format_func=lambda x: f"{x:.2f}")
top_p = st.sidebar.select_slider(label = "Top-P", options = list(np.arange(0.0,1.1, step=0.1)),value=1.0, help="Nucleus Sampling : If set to float < 1, only the most probable tokens with probabilities that add up to :obj:`top_p` or higher are kept for generation.", format_func=lambda x: f"{x:.2f}")
if st.sidebar.button("Clear All Cache"):
caching.clear_cache()
image_col, intro_col = st.beta_columns([3, 8])
image_col.image("./misc/mic-logo.png", use_column_width="always")
intro_col.write(read_markdown("intro.md"))
with st.beta_expander("Usage"):
st.markdown(read_markdown("usage.md"))
with st.beta_expander("Article"):
st.write(read_markdown("abstract.md"))
st.write(read_markdown("caveats.md"))
st.write("## Methodology")
st.image(
"./misc/Multilingual-IC.png"
)
st.markdown(read_markdown("pretraining.md"))
st.write(read_markdown("challenges.md"))
st.write(read_markdown("social_impact.md"))
st.write(read_markdown("future_scope.md"))
st.write(read_markdown("references.md"))
# st.write(read_markdown("checkpoints.md"))
st.write(read_markdown("acknowledgements.md"))
if state.model is None:
with st.spinner("Loading model..."):
state.model = load_model(checkpoints[0])
first_index = 25
# Init Session State
if state.image_file is None:
state.image_file = dummy_data.loc[first_index, "image_file"]
state.caption = dummy_data.loc[first_index, "caption"].strip("- ")
state.lang_id = dummy_data.loc[first_index, "lang_id"]
image_path = os.path.join("images", state.image_file)
image = plt.imread(image_path)
state.image = image
new_col1, new_col2 = st.beta_columns([5,5])
if new_col1.button("Get a random example", help="Get a random example from one of the seeded examples."):
sample = dummy_data.sample(1).reset_index()
state.image_file = sample.loc[0, "image_file"]
state.caption = sample.loc[0, "caption"].strip("- ")
state.lang_id = sample.loc[0, "lang_id"]
image_path = os.path.join("images", state.image_file)
image = plt.imread(image_path)
state.image = image
transformed_image = get_transformed_image(state.image)
# Display Image
new_col1.image(state.image, use_column_width="always")
# Display Reference Caption
with new_col1.beta_expander("Reference Caption"):
st.write("**Reference Caption**: " + state.caption)
st.markdown(
f"""**English Translation**: {state.caption if state.lang_id == "en" else translate(state.caption, 'en')}"""
)
# Select Language
options = list(code_to_name.keys())
lang_id = new_col2.selectbox(
"Language",
index=options.index(state.lang_id),
options=options,
format_func=lambda x: code_to_name[x],
help="The language in which caption is to be generated."
)
sequence = ['']
if new_col2.button("Generate Caption", help="Generate a caption in the specified language."):
with st.spinner("Generating Sequence..."):
sequence = generate_sequence(transformed_image, lang_id, num_beams, temperature, top_p, do_sample, top_k, max_length)
# print(sequence)
if sequence!=['']:
new_col2.write(
"**Generated Caption**: "+sequence[0]
)
new_col2.write(
"**English Translation**: "+ sequence[0] if lang_id=="en" else translate(sequence[0])
)