bhavitvyamalik's picture
latest ckpt
8ab0ff2
raw
history blame
7.67 kB
from io import BytesIO
import streamlit as st
import pandas as pd
import json
import os
import numpy as np
from streamlit import caching
from PIL import Image
from model.flax_clip_vision_mbart.modeling_clip_vision_mbart import (
FlaxCLIPVisionMBartForConditionalGeneration,
)
from transformers import MBart50TokenizerFast
from utils import (
get_transformed_image,
)
import matplotlib.pyplot as plt
from mtranslate import translate
from session import _get_state
state = _get_state()
@st.cache
def load_model(ckpt):
return FlaxCLIPVisionMBartForConditionalGeneration.from_pretrained(ckpt)
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50")
language_mapping = {
"en": "en_XX",
"de": "de_DE",
"fr": "fr_XX",
"es": "es_XX"
}
code_to_name = {
"en": "English",
"fr": "French",
"de": "German",
"es": "Spanish",
}
@st.cache
def generate_sequence(pixel_values, lang_code, num_beams, temperature, top_p, do_sample, top_k, max_length):
lang_code = language_mapping[lang_code]
output_ids = state.model.generate(input_ids=pixel_values, forced_bos_token_id=tokenizer.lang_code_to_id[lang_code], max_length=max_length, num_beams=num_beams, temperature=temperature, top_p = top_p, top_k=top_k, do_sample=do_sample)
print(output_ids)
output_sequence = tokenizer.batch_decode(output_ids[0], skip_special_tokens=True, max_length=max_length)
return output_sequence
def read_markdown(path, parent="./sections/"):
with open(os.path.join(parent, path)) as f:
return f.read()
checkpoints = ["./ckpt/ckpt-51999"] # TODO: Maybe add more checkpoints?
dummy_data = pd.read_csv("reference.tsv", sep="\t")
st.set_page_config(
page_title="Multilingual Image Captioning",
layout="wide",
initial_sidebar_state="collapsed",
page_icon="./misc/mic-logo.png",
)
st.title("Multilingual Image Captioning")
st.write(
"[Bhavitvya Malik](https://huggingface.co/bhavitvyamalik), [Gunjan Chhablani](https://huggingface.co/gchhablani)"
)
st.sidebar.title("Generation Parameters")
# max_length = st.sidebar.number_input("Max Length", min_value=16, max_value=128, value=64, step=1, help="The maximum length of sequence to be generated.")
max_length = 64
do_sample = st.sidebar.checkbox("Sample", value=False, help="Sample from the model instead of using beam search.")
top_k = st.sidebar.number_input("Top K", min_value=10, max_value=200, value=50, step=1, help="The number of highest probability vocabulary tokens to keep for top-k-filtering.")
num_beams = st.sidebar.number_input(label="Number of Beams", min_value=2, max_value=10, value=4, step=1, help="Number of beams to be used in beam search.")
temperature = st.sidebar.select_slider(label="Temperature", options = list(np.arange(0.0,1.1, step=0.1)), value=1.0, help ="The value used to module the next token probabilities.", format_func=lambda x: f"{x:.2f}")
top_p = st.sidebar.select_slider(label = "Top-P", options = list(np.arange(0.0,1.1, step=0.1)),value=1.0, help="Nucleus Sampling : If set to float < 1, only the most probable tokens with probabilities that add up to :obj:`top_p` or higher are kept for generation.", format_func=lambda x: f"{x:.2f}")
if st.sidebar.button("Clear All Cache"):
caching.clear_cache()
image_col, intro_col = st.beta_columns([3, 8])
image_col.image("./misc/mic-logo.png", use_column_width="always")
intro_col.write(read_markdown("intro.md"))
with st.beta_expander("Usage"):
st.markdown(read_markdown("usage.md"))
with st.beta_expander("Article"):
st.write(read_markdown("abstract.md"))
st.write(read_markdown("caveats.md"))
st.write("## Methodology")
st.image(
"./misc/Multilingual-IC.png"
)
st.markdown(read_markdown("pretraining.md"))
st.write(read_markdown("challenges.md"))
st.write(read_markdown("social_impact.md"))
st.write(read_markdown("bias.md"))
col1, col2, col3, col4 = st.beta_columns([0.5,2.5,2.5,0.5])
with col2:
st.image("./misc/examples/female_dev_1.jpg", width=350, caption = 'German Caption: <PERSON> arbeitet an einem Computer.', use_column_width='always')
with col3:
st.image("./misc/examples/female_doctor.jpg", width=350, caption = 'English Caption: A portrait of <PERSON>, a doctor who specializes in health care.', use_column_width='always')
col1, col2, col3, col4 = st.beta_columns([0.5,2.5,2.5,0.5])
with col2:
st.image("./misc/examples/female_doctor_1.jpg", width=350, caption = 'Spanish Caption: El Dr. <PERSON> es un estudiante de posgrado.', use_column_width='always')
with col3:
st.image("./misc/examples/women_cricket.jpg", width=350, caption = 'English Caption: <PERSON> of India bats against <PERSON> of Australia during the first Twenty20 match between India and Australia at Indian Bowl Stadium in New Delhi on Friday. - PTI', use_column_width='always')
col1, col2, col3, col4 = st.beta_columns([0.5,2.5,2.5,0.5])
with col2:
st.image("./misc/examples/female_dev_2.jpg", width=350, caption = "French Caption: Un écran d'ordinateur avec un écran d'ordinateur ouvert.", use_column_width='always')
with col3:
st.image("./misc/examples/female_biker_resized.jpg", width=350, caption = 'German Caption: <PERSON> auf dem Motorrad von <PERSON>.', use_column_width='always')
st.write(read_markdown("future_scope.md"))
st.write(read_markdown("references.md"))
# st.write(read_markdown("checkpoints.md"))
st.write(read_markdown("acknowledgements.md"))
if state.model is None:
with st.spinner("Loading model..."):
state.model = load_model(checkpoints[0])
first_index = 25
# Init Session State
if state.image_file is None:
state.image_file = dummy_data.loc[first_index, "image_file"]
state.caption = dummy_data.loc[first_index, "caption"].strip("- ")
state.lang_id = dummy_data.loc[first_index, "lang_id"]
image_path = os.path.join("images", state.image_file)
image = plt.imread(image_path)
state.image = image
if st.button("Get a random example", help="Get a random example from one of the seeded examples."):
sample = dummy_data.sample(1).reset_index()
state.image_file = sample.loc[0, "image_file"]
state.caption = sample.loc[0, "caption"].strip("- ")
state.lang_id = sample.loc[0, "lang_id"]
image_path = os.path.join("images", state.image_file)
image = plt.imread(image_path)
state.image = image
transformed_image = get_transformed_image(state.image)
new_col1, new_col2 = st.beta_columns([5,5])
# Display Image
new_col1.image(state.image, use_column_width="always")
# Display Reference Caption
with new_col1.beta_expander("Reference Caption"):
st.write("**Reference Caption**: " + state.caption)
st.markdown(
f"""**English Translation**: {state.caption if state.lang_id == "en" else translate(state.caption, 'en')}"""
)
# Select Language
options = list(code_to_name.keys())
lang_id = new_col2.selectbox(
"Language",
index=options.index(state.lang_id),
options=options,
format_func=lambda x: code_to_name[x],
help="The language in which caption is to be generated."
)
sequence = ['']
if new_col2.button("Generate Caption", help="Generate a caption in the specified language."):
with st.spinner("Generating Sequence..."):
sequence = generate_sequence(transformed_image, lang_id, num_beams, temperature, top_p, do_sample, top_k, max_length)
# print(sequence)
if sequence!=['']:
new_col2.write(
"**Generated Caption**: "+sequence[0]
)
new_col2.write(
"**English Translation**: "+ sequence[0] if lang_id=="en" else translate(sequence[0])
)