Spaces:
Runtime error
Runtime error
gchhablani
commited on
Commit
•
950c460
1
Parent(s):
7fe8d4e
Change layout and update sidebar
Browse files- Multilingual IC.svg +0 -0
- app.py +38 -31
- mic-logo.png +0 -0
Multilingual IC.svg
ADDED
app.py
CHANGED
@@ -44,9 +44,9 @@ code_to_name = {
|
|
44 |
}
|
45 |
|
46 |
@st.cache(persist=True)
|
47 |
-
def generate_sequence(pixel_values, lang_code, num_beams):
|
48 |
lang_code = language_mapping[lang_code]
|
49 |
-
output_ids = model.generate(input_ids=pixel_values, forced_bos_token_id=tokenizer.lang_code_to_id[lang_code], max_length=64, num_beams=num_beams)
|
50 |
print(output_ids)
|
51 |
output_sequence = tokenizer.batch_decode(output_ids[0], skip_special_tokens=True, max_length=64)
|
52 |
return output_sequence
|
@@ -56,7 +56,7 @@ def read_markdown(path, parent="./sections/"):
|
|
56 |
return f.read()
|
57 |
|
58 |
|
59 |
-
checkpoints = ["./ckpt/ckpt-
|
60 |
dummy_data = pd.read_csv("reference.tsv", sep="\t")
|
61 |
|
62 |
st.set_page_config(
|
@@ -70,12 +70,29 @@ st.write(
|
|
70 |
"[Bhavitvya Malik](https://huggingface.co/bhavitvyamalik), [Gunjan Chhablani](https://huggingface.co/gchhablani)"
|
71 |
)
|
72 |
|
73 |
-
st.sidebar.title("
|
74 |
num_beams = st.sidebar.number_input(label="Number of Beams", min_value=2, max_value=10, value=4, step=1, help="Number of beams to be used in beam search.")
|
|
|
|
|
75 |
|
76 |
with st.beta_expander("Usage"):
|
77 |
st.markdown(read_markdown("usage.md"))
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
first_index = 20
|
80 |
# Init Session State
|
81 |
if state.image_file is None:
|
@@ -87,9 +104,9 @@ if state.image_file is None:
|
|
87 |
image = plt.imread(image_path)
|
88 |
state.image = image
|
89 |
|
90 |
-
col1, col2 = st.beta_columns([6, 4])
|
91 |
|
92 |
-
if
|
93 |
sample = dummy_data.sample(1).reset_index()
|
94 |
state.image_file = sample.loc[0, "image_file"]
|
95 |
state.caption = sample.loc[0, "caption"].strip("- ")
|
@@ -99,40 +116,42 @@ if col2.button("Get a random example"):
|
|
99 |
image = plt.imread(image_path)
|
100 |
state.image = image
|
101 |
|
102 |
-
col2.write("OR")
|
103 |
|
104 |
-
uploaded_file = col2.file_uploader("Upload your image", type=["png", "jpg", "jpeg"])
|
105 |
-
if uploaded_file is not None:
|
106 |
-
|
107 |
-
|
108 |
|
109 |
transformed_image = get_transformed_image(state.image)
|
110 |
|
|
|
111 |
# Display Image
|
112 |
-
|
|
|
113 |
|
114 |
# Display Reference Caption
|
115 |
-
|
116 |
-
|
117 |
f"""**English Translation**: {state.caption if state.lang_id == "en" else translate(state.caption, 'en')}"""
|
118 |
)
|
119 |
|
120 |
# Select Language
|
121 |
options = list(code_to_name.keys())
|
122 |
-
lang_id =
|
123 |
"Language",
|
124 |
index=options.index(state.lang_id),
|
125 |
options=options,
|
126 |
format_func=lambda x: code_to_name[x],
|
|
|
127 |
)
|
128 |
-
|
129 |
with st.spinner("Loading model..."):
|
130 |
model = load_model(checkpoints[0])
|
131 |
-
|
132 |
sequence = ['']
|
133 |
-
if
|
134 |
with st.spinner("Generating Sequence..."):
|
135 |
-
sequence = generate_sequence(transformed_image, lang_id, num_beams)
|
136 |
# print(sequence)
|
137 |
|
138 |
if sequence!=['']:
|
@@ -143,15 +162,3 @@ if sequence!=['']:
|
|
143 |
st.write(
|
144 |
"**English Translation**: "+ sequence[0] if lang_id=="en" else translate(sequence[0])
|
145 |
)
|
146 |
-
st.write(read_markdown("abstract.md"))
|
147 |
-
st.write(read_markdown("caveats.md"))
|
148 |
-
# st.write("# Methodology")
|
149 |
-
# st.image(
|
150 |
-
# "./misc/Multilingual-IC.png", caption="Seq2Seq model for Image-text Captioning."
|
151 |
-
# )
|
152 |
-
st.markdown(read_markdown("pretraining.md"))
|
153 |
-
st.write(read_markdown("challenges.md"))
|
154 |
-
st.write(read_markdown("social_impact.md"))
|
155 |
-
st.write(read_markdown("references.md"))
|
156 |
-
# st.write(read_markdown("checkpoints.md"))
|
157 |
-
st.write(read_markdown("acknowledgements.md"))
|
|
|
44 |
}
|
45 |
|
46 |
@st.cache(persist=True)
|
47 |
+
def generate_sequence(pixel_values, lang_code, num_beams, temperature, top_p):
|
48 |
lang_code = language_mapping[lang_code]
|
49 |
+
output_ids = model.generate(input_ids=pixel_values, forced_bos_token_id=tokenizer.lang_code_to_id[lang_code], max_length=64, num_beams=num_beams, temperature=temperature, top_p = top_p)
|
50 |
print(output_ids)
|
51 |
output_sequence = tokenizer.batch_decode(output_ids[0], skip_special_tokens=True, max_length=64)
|
52 |
return output_sequence
|
|
|
56 |
return f.read()
|
57 |
|
58 |
|
59 |
+
checkpoints = ["./ckpt/ckpt-17499"] # TODO: Maybe add more checkpoints?
|
60 |
dummy_data = pd.read_csv("reference.tsv", sep="\t")
|
61 |
|
62 |
st.set_page_config(
|
|
|
70 |
"[Bhavitvya Malik](https://huggingface.co/bhavitvyamalik), [Gunjan Chhablani](https://huggingface.co/gchhablani)"
|
71 |
)
|
72 |
|
73 |
+
st.sidebar.title("Generation Parameters")
|
74 |
num_beams = st.sidebar.number_input(label="Number of Beams", min_value=2, max_value=10, value=4, step=1, help="Number of beams to be used in beam search.")
|
75 |
+
temperature = st.sidebar.select_slider(label="Temperature", options = np.arange(0.0,1.1, step=0.1), value=1.0, help ="The value used to module the next token probabilities.", format_func=lambda x: f"{x:.2f}")
|
76 |
+
top_p = st.sidebar.select_slider(label = "Top-P", options = np.arange(0.0,1.1, step=0.1),value=1.0, help="Nucleus Sampling : If set to float < 1, only the most probable tokens with probabilities that add up to :obj:`top_p` or higher are kept for generation.", format_func=lambda x: f"{x:.2f}")
|
77 |
|
78 |
with st.beta_expander("Usage"):
|
79 |
st.markdown(read_markdown("usage.md"))
|
80 |
|
81 |
+
with st.beta_expander("Article"):
|
82 |
+
st.write(read_markdown("abstract.md"))
|
83 |
+
st.write(read_markdown("caveats.md"))
|
84 |
+
# st.write("# Methodology")
|
85 |
+
# st.image(
|
86 |
+
# "./misc/Multilingual-IC.png", caption="Seq2Seq model for Image-text Captioning."
|
87 |
+
# )
|
88 |
+
st.markdown(read_markdown("pretraining.md"))
|
89 |
+
st.write(read_markdown("challenges.md"))
|
90 |
+
st.write(read_markdown("social_impact.md"))
|
91 |
+
st.write(read_markdown("references.md"))
|
92 |
+
# st.write(read_markdown("checkpoints.md"))
|
93 |
+
st.write(read_markdown("acknowledgements.md"))
|
94 |
+
|
95 |
+
|
96 |
first_index = 20
|
97 |
# Init Session State
|
98 |
if state.image_file is None:
|
|
|
104 |
image = plt.imread(image_path)
|
105 |
state.image = image
|
106 |
|
107 |
+
# col1, col2 = st.beta_columns([6, 4])
|
108 |
|
109 |
+
if st.button("Get a random example", help="Get a random example from one of the seeded examples."):
|
110 |
sample = dummy_data.sample(1).reset_index()
|
111 |
state.image_file = sample.loc[0, "image_file"]
|
112 |
state.caption = sample.loc[0, "caption"].strip("- ")
|
|
|
116 |
image = plt.imread(image_path)
|
117 |
state.image = image
|
118 |
|
119 |
+
# col2.write("OR")
|
120 |
|
121 |
+
# uploaded_file = col2.file_uploader("Upload your image", type=["png", "jpg", "jpeg"])
|
122 |
+
# if uploaded_file is not None:
|
123 |
+
# state.image_file = os.path.join("images", uploaded_file.name)
|
124 |
+
# state.image = np.array(Image.open(uploaded_file))
|
125 |
|
126 |
transformed_image = get_transformed_image(state.image)
|
127 |
|
128 |
+
new_col1, new_col2 = st.beta_columns([5,5])
|
129 |
# Display Image
|
130 |
+
new_col1.image(state.image, use_column_width="always")
|
131 |
+
|
132 |
|
133 |
# Display Reference Caption
|
134 |
+
new_col2.write("**Reference Caption**: " + state.caption)
|
135 |
+
new_col2.markdown(
|
136 |
f"""**English Translation**: {state.caption if state.lang_id == "en" else translate(state.caption, 'en')}"""
|
137 |
)
|
138 |
|
139 |
# Select Language
|
140 |
options = list(code_to_name.keys())
|
141 |
+
lang_id = new_col2.selectbox(
|
142 |
"Language",
|
143 |
index=options.index(state.lang_id),
|
144 |
options=options,
|
145 |
format_func=lambda x: code_to_name[x],
|
146 |
+
help="The language in which caption is to be generated."
|
147 |
)
|
148 |
+
|
149 |
with st.spinner("Loading model..."):
|
150 |
model = load_model(checkpoints[0])
|
|
|
151 |
sequence = ['']
|
152 |
+
if new_col2.button("Generate Caption", help="Generate a caption in the specified language."):
|
153 |
with st.spinner("Generating Sequence..."):
|
154 |
+
sequence = generate_sequence(transformed_image, lang_id, num_beams, temperature, top_p)
|
155 |
# print(sequence)
|
156 |
|
157 |
if sequence!=['']:
|
|
|
162 |
st.write(
|
163 |
"**English Translation**: "+ sequence[0] if lang_id=="en" else translate(sequence[0])
|
164 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mic-logo.png
ADDED