Hugging Face's logo Hugging Face Search models, datasets, users... Models Datasets Resources Solutions Pricing Space: Flax Community's picture flax-community / papuGaPT2 Copied Runtime error App Files and versions Settings papuGaPT2 / app.py miwojc's picture miwojc Update app.py d4fb97b 2 minutes ago raw history blame edit 3,870 Bytes import json import random import requests from mtranslate import translate import streamlit as st MODEL_URL = "https://api-inference.huggingface.co/models/flax-community/papuGaPT2" PROMPT_LIST = { "Najsmaczniejszy owoc to...": ["Najsmaczniejszy owoc to "], "Cześć, mam na imię...": ["Cześć, mam na imię "], "Największym polskim poetą był...": ["Największym polskim poetą był "], } def query(payload, model_url): data = json.dumps(payload) print("model url:", model_url) response = requests.request( "POST", model_url, headers={}, data=data ) return json.loads(response.content.decode("utf-8")) def process( text: str, model_name: str, max_len: int, temp: float, top_k: int, top_p: float ): payload = { "inputs": text, "parameters": { "max_new_tokens": max_len, "top_k": top_k, "top_p": top_p, "temperature": temp, "repetition_penalty": 2.0, }, "options": { "use_cache": True, }, } return query(payload, model_name) # Page st.set_page_config(page_title="papuGaPT2 (Polish GPT-2) Demo") st.title("papuGaPT2 (Polish GPT-2") # Sidebar st.sidebar.subheader("Configurable parameters") max_len = st.sidebar.number_input( "Maximum length", value=100, help="The maximum length of the sequence to be generated.", ) temp = st.sidebar.slider( "Temperature", value=1.0, min_value=0.1, max_value=100.0, help="The value used to module the next token probabilities.", ) top_k = st.sidebar.number_input( "Top k", value=10, help="The number of highest probability vocabulary tokens to keep for top-k-filtering.", ) top_p = st.sidebar.number_input( "Top p", value=0.95, help=" If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.", ) do_sample = st.sidebar.selectbox( "Sampling?", (True, False), help="Whether or not to use sampling; use greedy decoding otherwise.", ) # Body st.markdown( """ papuGaPT2 (Polish GPT-2) model trained from scratch on OSCAR dataset. The models were trained with Jax and Flax using TPUs as part of the [Flax/Jax Community Week](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104) organised by HuggingFace. """ ) model_name = MODEL_URL ALL_PROMPTS = list(PROMPT_LIST.keys()) + ["Custom"] prompt = st.selectbox("Prompt", ALL_PROMPTS, index=len(ALL_PROMPTS) - 1) if prompt == "Custom": prompt_box = "Enter your text here" else: prompt_box = random.choice(PROMPT_LIST[prompt]) text = st.text_area("Enter text", prompt_box) if st.button("Run"): with st.spinner(text="Getting results..."): st.subheader("Result") print(f"maxlen:{max_len}, temp:{temp}, top_k:{top_k}, top_p:{top_p}") result = process( text=text, model_name=model_name, max_len=int(max_len), temp=temp, top_k=int(top_k), top_p=float(top_p), ) print("result:", result) if "error" in result: if type(result["error"]) is str: st.write(f'{result["error"]}.', end=" ") if "estimated_time" in result: st.write( f'Please try again in about {result["estimated_time"]:.0f} seconds.' ) else: if type(result["error"]) is list: for error in result["error"]: st.write(f"{error}") else: result = result[0]["generated_text"] st.write(result.replace("\ ", " \ ")) st.text("English translation") st.write(translate(result, "en", "es").replace("\ ", " \ "))