Spaces:
Runtime error
Runtime error
File size: 8,075 Bytes
6ae27e8 75efc41 a41bdbc 75c3a89 75efc41 6ae27e8 6e03e5d 75efc41 6ae27e8 205f298 6ae27e8 f7a5664 6ae27e8 f7a5664 6ae27e8 6e03e5d 0be3a1a 6e03e5d 6ae27e8 6e03e5d 6ae27e8 6e03e5d 6ae27e8 31f3439 6e03e5d 6ae27e8 6e03e5d 6ae27e8 6e03e5d 5cd1ac6 6e03e5d a41bdbc f7a5664 6e03e5d 75efc41 6ae27e8 6e03e5d 31f3439 5cd1ac6 f7a5664 5cd1ac6 f7a5664 5cd1ac6 75c3a89 5cd1ac6 f7a5664 5cd1ac6 f7a5664 5cd1ac6 75efc41 5cd1ac6 21c260a 75c3a89 6e03e5d 75c3a89 883e41e f18ec1c 75efc41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import streamlit as st
import pandas as pd
import torch
from backend import inference
from backend.config import MODELS_ID, QA_MODELS_ID, SEARCH_MODELS_ID
from backend.utils import load_gender_data
st.title('Demo using Flax-Sentence-Tranformers')
st.sidebar.title('Tasks')
menu = st.sidebar.radio("", options=["Sentence Similarity", "Asymmetric QA", "Search / Cluster",
"Gender Bias Evaluation"], index=0)
st.markdown('''
Hi! This is the demo for the [flax sentence embeddings](https://huggingface.co/flax-sentence-embeddings) created for the **Flax/JAX community week 🤗**.
We trained three general-purpose flax-sentence-embeddings models: a **distilroberta base**, a **mpnet base** and a **minilm-l6**.
All were trained on all the dataset of the 1B+ train corpus with the v3 setup.
In addition, we trained 20 models focused on general-purpose, QuestionAnswering and Codesearch.
View our models here : https://huggingface.co/flax-sentence-embeddings
''')
if menu == "Sentence Similarity":
st.header('Sentence Similarity')
st.markdown('''
**Instructions**: You can compare the similarity of a main text with other texts of your choice. In the background, we'll create an embedding for each text, and then we'll use the cosine similarity function to calculate a similarity metric between our main sentence and the others.
For more cool information on sentence embeddings, see the [sBert project](https://www.sbert.net/examples/applications/computing-embeddings/README.html).
''')
select_models = st.multiselect("Choose models", options=list(MODELS_ID), default=list(MODELS_ID)[0])
anchor = st.text_input(
'Please enter here the main text you want to compare:'
)
n_texts = st.number_input(
f'''How many texts you want to compare with: '{anchor}'?''',
value=2,
min_value=2)
inputs = []
for i in range(int(n_texts)):
input = st.text_input(f'Text {i + 1}:')
inputs.append(input)
if st.button('Tell me the similarity.'):
results = {model: inference.text_similarity(anchor, inputs, model, MODELS_ID) for model in select_models}
df_results = {model: results[model] for model in results}
index = [f"{idx + 1}:{input[:min(15, len(input))]}..." for idx, input in enumerate(inputs)]
df_total = pd.DataFrame(index=index)
for key, value in df_results.items():
df_total[key] = [ts.item() for ts in torch.nn.functional.softmax(torch.from_numpy(value['score'].values))]
st.write('Here are the results for selected models:')
st.write(df_total)
st.write('Visualize the results of each model:')
st.line_chart(df_total)
elif menu == "Asymmetric QA":
st.header('Asymmetric QA')
st.markdown('''
**Instructions**: You can compare the Answer likeliness of a given Query with answer candidates of your choice. In the background, we'll create an embedding for each answers, and then we'll use the cosine similarity function to calculate a similarity metric between our query sentence and the others.
`mpnet_asymmetric_qa` model works best for hard negative answers or distinguishing similar queries due to separate models applied for encoding questions and answers.
For more cool information on sentence embeddings, see the [sBert project](https://www.sbert.net/examples/applications/computing-embeddings/README.html).
''')
select_models = st.multiselect("Choose models", options=list(QA_MODELS_ID), default=list(QA_MODELS_ID)[0])
anchor = st.text_input(
'Please enter here the query you want to compare with given answers:',
value="What is the weather in Paris?"
)
n_texts = st.number_input(
f'''How many answers you want to compare with: '{anchor}'?''',
value=10,
min_value=2)
inputs = []
defaults = ["It is raining in Paris right now with 70 F temperature.", "What is the weather in Berlin?", "I have 3 brothers."]
for i in range(int(n_texts)):
input = st.text_input(f'Answer {i + 1}:', value=defaults[i] if i < len(defaults) else "")
inputs.append(input)
if st.button('Tell me Answer likeliness.'):
results = {model: inference.text_similarity(anchor, inputs, model, QA_MODELS_ID) for model in select_models}
df_results = {model: results[model] for model in results}
index = [f"{idx + 1}:{input[:min(15, len(input))]}..." for idx, input in enumerate(inputs)]
df_total = pd.DataFrame(index=index)
for key, value in df_results.items():
df_total[key] = [ts.item() for ts in torch.nn.functional.softmax(torch.from_numpy(value['score'].values))]
st.write('Here are the results for selected models:')
st.write(df_total)
st.write('Visualize the results of each model:')
st.line_chart(df_total)
elif menu == "Search / Cluster":
st.header('Search / Cluster')
st.markdown('''
**Instructions**: Make a query for anything related to "Python" and the model you choose will return you similar queries.
For more cool information on sentence embeddings, see the [sBert project](https://www.sbert.net/examples/applications/computing-embeddings/README.html).
''')
select_models = st.multiselect("Choose models", options=list(SEARCH_MODELS_ID), default=list(SEARCH_MODELS_ID)[0])
anchor = st.text_input(
'Please enter here your query about "Python", we will look for similar ones:',
value="How do I sort a dataframe by column"
)
n_texts = st.number_input(
f'''How many similar queries you want?''',
value=3,
min_value=2)
if st.button('Give me my search.'):
results = {model: inference.text_search(anchor, n_texts, model, QA_MODELS_ID) for model in select_models}
st.table(pd.DataFrame(results[select_models[0]]).T)
if st.button('3D Clustering of search result using T-SNE on generated embeddings'):
st.write("Currently only works at local due to Spaces / plotly integration.")
st.write("Demonstration : https://gyazo.com/1ff0aa438ae533de3b3c63382af7fe80")
# fig = inference.text_cluster(anchor, 1000, select_models[0], QA_MODELS_ID)
# fig.show()
elif menu == "Gender Bias Evaluation":
st.header("Gender Bias Evaluation")
st.markdown('''
**Instructions**: Here we can observe **inherent gender bias** in training set via random sampling of the sentences.
Input 3 texts, one without any mention of gender for target occupation and 2 others with gendered pronouns.
Hopefully the evaluation performed here can proceed towards improving Gender-neutrality of datasets.
For more cool information on sentence embeddings, see the [sBert project](https://www.sbert.net/examples/applications/computing-embeddings/README.html).
''')
select_models = st.multiselect("Choose models", options=list(MODELS_ID), default=list(MODELS_ID)[0])
base_text = st.text_input("Gender Neutral Text", "President of the United States promised relief to Hurricane survivors.")
male_text = st.text_input("Male-assumed Text", "He promised relief to Hurricane survivors.")
female_text = st.text_input("Female-assumed Text", "She promised relief to Hurricane survivors.")
enter = st.button("Compare")
if enter:
results = {model: inference.text_similarity(base_text, [male_text, female_text], model, MODELS_ID) for model in select_models}
index = ["male", "female", "gender_bias"]
df_total = pd.DataFrame(index=index)
for key, value in results.items():
softmax = [ts.item() for ts in torch.nn.functional.softmax(torch.from_numpy(value['score'].values))]
if softmax[0] > softmax[1]:
gender = "male"
elif abs(softmax[0] - softmax[1]) < 1e-2:
gender = "neutral"
else:
gender = "female"
softmax.append(gender)
df_total[key] = softmax
st.write('Here are the results for selected models:')
st.write(df_total) |