File size: 7,532 Bytes
015e873 e86e6ab 015e873 e86e6ab 015e873 31cd7f0 49b7150 015e873 e86e6ab 015e873 e86e6ab 015e873 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import os
from typing import Optional, Tuple
import gradio as gr
from threading import Lock
# possibly needed for loading the environment variables locally.
# not needed when hosted on hugging face if using HF secrets
#from dotenv import load_dotenv
#load_dotenv()
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate)
from langchain.chains import LLMChain
from langchain.chat_models import ChatOpenAI
# initialize the LLM as part of the conversatiion chain
# temperature of 0.2 produces more creativity
def load_chain():
"""Logic for loading the chain you want to use should go here."""
template = os.getenv("CAPTION_PROMPT")
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template = "{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
#print(f"chat_prompt={chat_prompt}")
llm = ChatOpenAI(temperature=0.2,
model_name='gpt-3.5-turbo')
chain = LLMChain(llm=llm, prompt=chat_prompt)
return chain
# set the api key and load conversation chain once when the api key changes in input box
def set_openai_api_key(api_key: str):
"""Set the api key and return chain.
If no api_key, then None is returned.
"""
if api_key:
os.environ["OPENAI_API_KEY"] = api_key
chain = load_chain()
os.environ["OPENAI_API_KEY"] = ""
return chain
# load the hugging face image to text captioner
from transformers import pipeline
captioner = pipeline("image-to-text",model="Salesforce/blip-image-captioning-base")
import PIL
# an image has been selected. it comes to this fn as a numpy ndarray
# convert it to a PIL image and feed to the captioner
# return the resulting caption
#
# NOTE: due to an error in gradio, this fn is triggered twice for each img change
# only process the first fn call, and keep the first caption result
async def image_supplied(img, count: int, last_cap: str):
if img is None: return "", count, ""
count += 1
if (count & 1) == 0: return last_cap, count, last_cap
if img.any():
im = PIL.Image.fromarray(img)
caption = captioner(im, max_new_tokens=20)
result = caption[0]['generated_text']
#print(f"caption={result}")
return result, count, result
# class wrapping the chat
class ChatWrapper:
def __init__(self):
self.lock = Lock()
def __call__(
self, api_key: str, inp: str, #history: Optional[Tuple[str, str]],
chain: Optional[LLMChain]
):
"""Execute the chat functionality."""
self.lock.acquire()
try:
#history = history or []
# If chain is None, that is because no API key was provided by user.
if chain is None:
# attempt to load default rate limited key and initialize chain
key = openai_api_key_textbox.value
#print(key)
chain = set_openai_api_key(key)
# if chain is still None, the supplied key didn't work
if chain is None:
#history.append((inp, "Please paste your OpenAI key to use"))
#last = history[-1][-1] # get last element as message returned
#return last, history
return "Please paste your OpenAI key to use"
# Set OpenAI key
import openai
openai.api_key = api_key
openai.api_type = 'open_ai'
openai.api_base = 'https://api.openai.com/v1'
# Run chain and append input.
output = chain.run(inp)
#history.append((inp, output))
last = output #history[-1][-1] # get last element of list, and then last of that vector
except Exception as e:
raise e
finally:
self.lock.release()
return last #, history
chat = ChatWrapper()
# custom css
css = """
.gradio-container {background-color: lightgray; background: url('file=./sd1.png'); background-size: cover}
footer {visibility: hidden}
"""
font_name = "Kalam"
block = gr.Blocks(title="π· PunnyPix πΈ", css=css,
theme=gr.themes.Default(
text_size = 'lg',
font=[gr.themes.GoogleFont(font_name),"Arial","sans-serif"],
spacing_size="sm", radius_size="sm"))
# create app layout
with block:
with gr.Row():
with gr.Column():
gr.Markdown("<h2><center>π· PunnyPix πΈ</center></h2>")
gr.Markdown("<h4><center>Load image. Edit automated caption. Click 'Submit' to get a funny (hopefully) caption.</center></h4>")
openai_api_key_textbox = gr.Textbox(
label="π Default key is rate limited. Paste your OpenAI API key (sk-...)",
placeholder="Paste your OpenAI API key (sk-...)",
value = os.getenv("OPENAI_API_KEY"), # default to rate limited key
lines=1,
type="password"
)
with gr.Row():
with gr.Column():
image_box = gr.Image(show_label=False)
with gr.Row():
result_box = gr.Textbox(label="Original caption π¨οΈ", value="", interactive=True, lines=1, scale=3)
submit = gr.Button(value="Submit", variant="secondary", size='sm', scale=1) #scale button at 1/3 size of two text boxes
caption_box = gr.Textbox(
label="Converted caption π―οΈ",
value="",
lines=1,
interactive=False,
scale=3
)
gr.Examples(
label="Sample images",
examples=[
'carolina.jpg',
'house.jpg',
'viceroy.jpg',
'airplane.jpg',
'swimming.jpg',
'cats2.jpg',
'car.jpg',
'dogs.jpg',
'cows2.jpg',
'mountains.jpg'
],
inputs=image_box
)
gr.HTML(
"<center><a style='color: white', href='https://github.com/flobbit1/punnypix'>Powered by LangChain π¦οΈπ, Hugging Face transformers, OpenAI</a></center>"
)
#state = gr.State()
agent_state = gr.State()
# once caption has been confirmed (either through enter in box or hitting "submit")
# pass to the chat to process and get result (which goes into caption_box)
submit.click(chat, inputs=[openai_api_key_textbox, result_box, agent_state], outputs=[caption_box])
result_box.submit(chat, inputs=[openai_api_key_textbox, result_box, agent_state], outputs=[caption_box])
#submit.click(chat, inputs=[openai_api_key_textbox, result_box, state, agent_state], outputs=[caption_box, state])
#result_box.submit(chat, inputs=[openai_api_key_textbox, result_box, state, agent_state], outputs=[caption_box, state])
count = gr.State(value=0)
last_cap = gr.State(value="")
# if image has changed, feed it to "image_supplied", and pass result to "result_box"
image_box.change(
image_supplied,
inputs=[image_box, count, last_cap],
outputs=[result_box, count, last_cap]
)
# if api key in input box has changed, update the key in app
openai_api_key_textbox.change(
set_openai_api_key,
inputs=[openai_api_key_textbox],
outputs=[agent_state],
)
block.launch(debug=True) |