File size: 33,692 Bytes
be5548b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
import argparse
import json
import requests
import time
import warnings
from n_tokens import estimate_price
import pickle

import numpy as np
import torch
from pathlib import Path

from utils.babyai_utils.baby_agent import load_agent
from utils import *
from models import *
import subprocess
import os

from matplotlib import pyplot as plt

from gym_minigrid.wrappers import *
from gym_minigrid.window import Window
from datetime import datetime

from imageio import mimsave

def new_episode_marker():
    return "New episode.\n"

def success_marker():
    return "Success!\n"

def failure_marker():
    return "Failure!\n"

def action_query():
    return "Act :"

def get_parsed_action(text_action):
    """
    Parses the text generated by a model and extracts the action
    """

    if "move forward" in text_action:
        return "move forward"

    elif "done" in text_action:
        return "done"

    elif "turn left" in text_action:
        return "turn left"

    elif "turn right" in text_action:
        return "turn right"

    elif "toggle" in text_action:
        return "toggle"

    elif "no_op" in text_action:
        return "no_op"
    else:
        warnings.warn(f"Undefined action {text_action}")
        return "no_op"


def action_to_prompt_action_text(action):
    if np.allclose(action, [int(env.actions.forward), np.nan, np.nan], equal_nan=True):
        # 2
        text_action = "move forward"

    elif np.allclose(action, [int(env.actions.left), np.nan, np.nan], equal_nan=True):
        # 0
        text_action = "turn left"

    elif np.allclose(action, [int(env.actions.right), np.nan, np.nan], equal_nan=True):
        # 1
        text_action = "turn right"

    elif np.allclose(action, [int(env.actions.toggle), np.nan, np.nan], equal_nan=True):
        # 3
        text_action = "toggle"

    elif np.allclose(action, [int(env.actions.done), np.nan, np.nan], equal_nan=True):
        # 4
        text_action = "done"

    elif np.allclose(action, [np.nan, np.nan, np.nan], equal_nan=True):
        text_action = "no_op"

    else:
        warnings.warn(f"Undefined action {action}")
        return "no_op"

    return f"{action_query()} {text_action}\n"



def text_action_to_action(text_action):

    # text_action = get_parsed_action(text_action)

    if "move forward" == text_action:
        action = [int(env.actions.forward), np.nan, np.nan]

    elif "turn left" == text_action:
        action = [int(env.actions.left), np.nan, np.nan]

    elif "turn right" == text_action:
        action = [int(env.actions.right), np.nan, np.nan]

    elif "toggle" == text_action:
        action = [int(env.actions.toggle), np.nan, np.nan]

    elif "done" == text_action:
        action = [int(env.actions.done), np.nan, np.nan]

    elif "no_op" == text_action:
        action = [np.nan, np.nan, np.nan]

    return action


def prompt_preprocessor(llm_prompt):
    # remove peer observations
    lines = llm_prompt.split("\n")
    new_lines = []
    for line in lines:
        if line.startswith("#"):
            continue

        elif line.startswith("Conversation"):
            continue

        elif "peer" in line:
            caretaker = True
            if caretaker:
                # show only the location of the caretaker

                # this is very ugly, todo: refactor this
                assert "there is a" in line
                start_index = line.index('there is a') + 11
                new_line = line[:start_index] + 'caretaker'

                new_lines.append(new_line)

            else:
                # no caretaker at all
                if line.startswith("Obs :") and "peer" in line:
                    # remove only the peer descriptions
                    line = "Obs :"
                    new_lines.append(line)
                else:
                    assert "peer" in line

        elif "Caretaker:" in line:
            line = line.replace("Caretaker:", "Caretaker says: ")
            new_lines.append(line)

        else:
            new_lines.append(line)

    return "\n".join(new_lines)

def generate_text_obs(obs, info):

    text_observation = obs_to_text(info)

    llm_prompt = "Obs : "
    llm_prompt += "".join(text_observation)

    # add utterances
    if obs["utterance_history"] != "Conversation: \n":
        utt_hist = obs['utterance_history']
        utt_hist = utt_hist.replace("Conversation: \n","")
        llm_prompt += utt_hist

    return llm_prompt

def obs_to_text(info):
    image, vis_mask = info["image"], info["vis_mask"]
    carrying = info["carrying"]
    agent_pos_vx, agent_pos_vy = info["agent_pos_vx"], info["agent_pos_vy"]
    npc_actions_dict = info["npc_actions_dict"]

    # (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color], state)
    # State, 0: open, 1: closed, 2: locked
    IDX_TO_COLOR = dict(zip(COLOR_TO_IDX.values(), COLOR_TO_IDX.keys()))
    IDX_TO_OBJECT = dict(zip(OBJECT_TO_IDX.values(), OBJECT_TO_IDX.keys()))

    list_textual_descriptions = []

    if carrying is not None:
        list_textual_descriptions.append("You carry a {} {}".format(carrying.color, carrying.type))

    # agent_pos_vx, agent_pos_vy = self.get_view_coords(self.agent_pos[0], self.agent_pos[1])

    view_field_dictionary = dict()

    for i in range(image.shape[0]):
        for j in range(image.shape[1]):
            if image[i][j][0] != 0 and image[i][j][0] != 1 and image[i][j][0] != 2:
                if i not in view_field_dictionary.keys():
                    view_field_dictionary[i] = dict()
                    view_field_dictionary[i][j] = image[i][j]
                else:
                    view_field_dictionary[i][j] = image[i][j]

    # Find the wall if any
    #  We describe a wall only if there is no objects between the agent and the wall in straight line

    # Find wall in front
    add_wall_descr = False
    if add_wall_descr:
        j = agent_pos_vy - 1
        object_seen = False
        while j >= 0 and not object_seen:
            if image[agent_pos_vx][j][0] != 0 and image[agent_pos_vx][j][0] != 1:
                if image[agent_pos_vx][j][0] == 2:
                    list_textual_descriptions.append(
                        f"A wall is {agent_pos_vy - j} steps in front of you. \n")  # forward
                    object_seen = True
                else:
                    object_seen = True
            j -= 1
        # Find wall left
        i = agent_pos_vx - 1
        object_seen = False
        while i >= 0 and not object_seen:
            if image[i][agent_pos_vy][0] != 0 and image[i][agent_pos_vy][0] != 1:
                if image[i][agent_pos_vy][0] == 2:
                    list_textual_descriptions.append(
                        f"A wall is {agent_pos_vx - i} steps to the left. \n")  # left
                    object_seen = True
                else:
                    object_seen = True
            i -= 1
        # Find wall right
        i = agent_pos_vx + 1
        object_seen = False
        while i < image.shape[0] and not object_seen:
            if image[i][agent_pos_vy][0] != 0 and image[i][agent_pos_vy][0] != 1:
                if image[i][agent_pos_vy][0] == 2:
                    list_textual_descriptions.append(
                        f"A wall is {i - agent_pos_vx} steps to the right. \n")  # right
                    object_seen = True
                else:
                    object_seen = True
            i += 1

    # list_textual_descriptions.append("You see the following objects: ")
    # returns the position of seen objects relative to you
    for i in view_field_dictionary.keys():
        for j in view_field_dictionary[i].keys():
            if i != agent_pos_vx or j != agent_pos_vy:
                object = view_field_dictionary[i][j]

                # # don't show npc
                # if IDX_TO_OBJECT[object[0]] == "npc":
                #     continue

                front_dist = agent_pos_vy - j
                left_right_dist = i - agent_pos_vx

                loc_descr = ""
                if front_dist == 1 and left_right_dist == 0:
                    loc_descr += "Right in front of you "

                elif left_right_dist == 1 and front_dist == 0:
                    loc_descr += "Just to the right of you"

                elif left_right_dist == -1 and front_dist == 0:
                    loc_descr += "Just to the left of you"

                else:
                    front_str = str(front_dist) + " steps in front of you " if front_dist > 0 else ""

                    loc_descr += front_str

                    suff = "s" if abs(left_right_dist) > 0 else ""
                    and_ = "and" if loc_descr != "" else ""

                    if left_right_dist < 0:
                        left_right_str = f"{and_} {-left_right_dist} step{suff} to the left"
                        loc_descr += left_right_str

                    elif left_right_dist > 0:
                        left_right_str = f"{and_} {left_right_dist} step{suff} to the right"
                        loc_descr += left_right_str

                    else:
                        left_right_str = ""
                        loc_descr += left_right_str

                loc_descr += f" there is a "

                obj_type = IDX_TO_OBJECT[object[0]]
                if obj_type == "npc":
                    IDX_TO_STATE = {0: 'friendly', 1: 'antagonistic'}

                    description = f"{IDX_TO_STATE[object[2]]} {IDX_TO_COLOR[object[1]]} peer. "

                    # gaze
                    gaze_dir = {
                        0: "towards you",
                        1: "to the left of you",
                        2: "in the same direction as you",
                        3: "to the right of you",
                    }
                    description += f"It is looking {gaze_dir[object[3]]}. "

                    # point
                    point_dir = {
                        0: "towards you",
                        1: "to the left of you",
                        2: "in the same direction as you",
                        3: "to the right of you",
                    }

                    if object[4] != 255:
                        description += f"It is pointing {point_dir[object[4]]}. "

                    # last action
                    last_action = {v: k for k, v in npc_actions_dict.items()}[object[5]]

                    last_action = {
                        "go_forward": "foward",
                        "rotate_left": "turn left",
                        "rotate_right": "turn right",
                        "toggle_action": "toggle",
                        "point_stop_point": "stop pointing",
                        "point_E": "",
                        "point_S": "",
                        "point_W": "",
                        "point_N": "",
                        "stop_point": "stop pointing",
                        "no_op": ""
                    }[last_action]

                    if last_action not in ["no_op", ""]:
                        description += f"It's last action is {last_action}. "

                elif obj_type in ["switch", "apple", "generatorplatform", "marble", "marbletee", "fence"]:
                    # todo: this assumes that Switch.no_light == True
                    description = f"{IDX_TO_COLOR[object[1]]} {IDX_TO_OBJECT[object[0]]} "
                    assert object[2:].mean() == 0

                elif obj_type == "lockablebox":
                    IDX_TO_STATE = {0: 'open', 1: 'closed', 2: 'locked'}
                    description = f"{IDX_TO_STATE[object[2]]} {IDX_TO_COLOR[object[1]]} {IDX_TO_OBJECT[object[0]]} "
                    assert object[3:].mean() == 0

                elif obj_type == "applegenerator":
                    IDX_TO_STATE = {1: 'square', 2: 'round'}
                    description = f"{IDX_TO_STATE[object[2]]} {IDX_TO_COLOR[object[1]]} {IDX_TO_OBJECT[object[0]]} "
                    assert object[3:].mean() == 0

                elif obj_type == "remotedoor":
                    IDX_TO_STATE = {0: 'open', 1: 'closed'}
                    description = f"{IDX_TO_STATE[object[2]]} {IDX_TO_COLOR[object[1]]} {IDX_TO_OBJECT[object[0]]} "
                    assert object[3:].mean() == 0

                elif obj_type == "door":
                    IDX_TO_STATE = {0: 'open', 1: 'closed', 2: 'locked'}
                    description = f"{IDX_TO_STATE[object[2]]} {IDX_TO_COLOR[object[1]]} {IDX_TO_OBJECT[object[0]]} "
                    assert object[3:].mean() == 0

                elif obj_type == "lever":
                    IDX_TO_STATE = {1: 'activated', 0: 'unactivated'}
                    if object[3] == 255:
                        countdown_txt = ""
                    else:
                        countdown_txt = f"with {object[3]} timesteps left. "

                    description = f"{IDX_TO_STATE[object[2]]} {IDX_TO_COLOR[object[1]]} {IDX_TO_OBJECT[object[0]]} {countdown_txt}"

                    assert object[4:].mean() == 0
                else:
                    raise ValueError(f"Undefined object type {obj_type}")

                full_destr = loc_descr + description + "\n"

                list_textual_descriptions.append(full_destr)

    if len(list_textual_descriptions) == 0:
        list_textual_descriptions.append("\n")

    return list_textual_descriptions

def plt_2_rgb(env):
    # data = np.frombuffer(env.window.fig.canvas.tostring_rgb(), dtype=np.uint8)
    # data = data.reshape(env.window.fig.canvas.get_width_height()[::-1] + (3,))

    width, height = env.window.fig.get_size_inches() * env.window.fig.get_dpi()
    data = np.fromstring(env.window.fig.canvas.tostring_rgb(), dtype='uint8').reshape(int(height), int(width), 3)
    return data


def reset(env):
    env.reset()
    # a dirty trick just to get obs and info
    return env.step([np.nan, np.nan, np.nan])
    # return step("no_op")

def generate(text_input, model):
    # return "(a) move forward"
    if model == "dummy":
        print("dummy action forward")
        return "move forward"

    elif model == "interactive":
        return input("Enter action:")

    elif model == "random":
        print("random agent")

        print("PROMPT:")
        print(text_input)
        return random.choice([
            "move forward",
            "turn left",
            "turn right",
            "toggle",
        ])

    elif model in ["gpt-3.5-turbo-0301", "gpt-3.5-turbo-0613", "gpt-4-0613", "gpt-4-0314"]:
        while True:
            try:
                c = openai.ChatCompletion.create(
                    model=model,
                    messages=[
                        # {"role": "system", "content": ""},
                        # {"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."},
                        # {"role": "user", "content": "Continue the following text in the most logical way.\n"+text_input}

                        # {"role": "system", "content":
                        #     "You are an agent and can use the following actions: 'move forward', 'toggle', 'turn left', 'turn right', 'done'."
                        #     # "The caretaker will say the color of the box which you should open. Turn until you find this box and toggle it when it is right in front of it."
                        #     # "Then an apple will appear and you can toggle it to succeed."
                        #  },
                        {"role": "user", "content": text_input}
                    ],
                    max_tokens=3,
                    n=1,
                    temperature=0.0,
                    request_timeout=30,
                )
                break
            except Exception as e:
                print(e)
                print("Pausing")
                time.sleep(10)
                continue
        print("->LLM generation: ", c['choices'][0]['message']['content'])
        return c['choices'][0]['message']['content']

    elif re.match(r"text-.*-\d{3}", model) or model in ["gpt-3.5-turbo-instruct-0914"]:
        while True:
            try:
                response = openai.Completion.create(
                    model=model,
                    prompt=text_input,
                    # temperature=0.7,
                    temperature=0.0,
                    max_tokens=3,
                    top_p=1,
                    frequency_penalty=0,
                    presence_penalty=0,
                    timeout=30
                )
                break

            except Exception as e:
                print(e)
                print("Pausing")
                time.sleep(10)
                continue

        choices = response["choices"]
        assert len(choices) == 1
        return choices[0]["text"].strip().lower()  # remove newline from the end

    elif model in ["gpt2_large", "api_bloom"]:
        # HF_TOKEN = os.getenv("HF_TOKEN")
        if model == "gpt2_large":
            API_URL = "https://api-inference.huggingface.co/models/gpt2-large"

        elif model == "api_bloom":
            API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom"

        else:
            raise ValueError(f"Undefined model {model}.")

        headers = {"Authorization": f"Bearer {HF_TOKEN}"}

        def query(text_prompt, n_tokens=3):

            input = text_prompt

            # make n_tokens request and append the output each time - one request generates one token

            for _ in range(n_tokens):
                # prepare request
                payload = {
                    "inputs": input,
                    "parameters": {
                        "do_sample": False,
                        'temperature': 0,
                        'wait_for_model': True,
                        # "max_length": 500,  # for gpt2
                        # "max_new_tokens": 250  # fot gpt2-xl
                    },
                }
                data = json.dumps(payload)

                # request
                response = requests.request("POST", API_URL, headers=headers, data=data)
                response_json = json.loads(response.content.decode("utf-8"))

                if type(response_json) is list and len(response_json) == 1:
                    # generated_text contains the input + the response
                    response_full_text = response_json[0]['generated_text']

                    # we use this as the next input
                    input = response_full_text

                else:
                    print("Invalid request to huggingface api")
                    from IPython import embed; embed()

            # remove the prompt from the beginning
            assert response_full_text.startswith(text_prompt)
            response_text = response_full_text[len(text_prompt):]

            return response_text

        response = query(text_input).strip().lower()
        return response

    elif model in ["bloom_560m"]:
        # from transformers import BloomForCausalLM
        # from transformers import BloomTokenizerFast
        #
        # tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom-560m", cache_dir=".cache/huggingface/")
        # model = BloomForCausalLM.from_pretrained("bigscience/bloom-560m", cache_dir=".cache/huggingface/")

        inputs = hf_tokenizer(text_input, return_tensors="pt")
        # 3 words
        result_length = inputs['input_ids'].shape[-1]+3
        full_output = hf_tokenizer.decode(hf_model.generate(inputs["input_ids"], max_length=result_length)[0])

        assert full_output.startswith(text_input)
        response = full_output[len(text_input):]

        response = response.strip().lower()

        return response

    else:
        raise ValueError("Unknown model.")


def estimate_tokens_selenium(prompt):
    # selenium is used because python3.9 is needed for tiktoken

    from selenium import webdriver
    from selenium.webdriver.common.by import By
    from selenium.webdriver.support.ui import WebDriverWait
    from selenium.webdriver.support import expected_conditions as EC
    import time

    # Initialize the WebDriver instance
    options = webdriver.ChromeOptions()
    options.add_argument('headless')

    # set up the driver
    driver = webdriver.Chrome(options=options)

    # Navigate to the website
    driver.get('https://platform.openai.com/tokenizer')

    text_input = driver.find_element(By.XPATH, '/html/body/div[1]/div[1]/div/div[2]/div[3]/textarea')
    text_input.clear()
    text_input.send_keys(prompt)

    n_tokens = 0
    while n_tokens == 0:
        time.sleep(1)
        # Wait for the response to be loaded
        wait = WebDriverWait(driver, 10)
        response = wait.until(
            EC.presence_of_element_located((By.CSS_SELECTOR, 'div.tokenizer-stat:nth-child(1) > div:nth-child(2)')))
        n_tokens = int(response.text.replace(",", ""))


    # Close the WebDriver instance
    driver.quit()
    return n_tokens


def load_in_context_examples(in_context_episodes):
    in_context_examples = ""
    print(f'Loading {len(in_context_episodes)} examples.')
    for episode_data in in_context_episodes:

        in_context_examples += new_episode_marker()

        for step_i, step_data in enumerate(episode_data):

            action = step_data["action"]
            info = step_data["info"]
            obs = step_data["obs"]
            reward = step_data["reward"]
            done = step_data["done"]

            if step_i == 0:
                # step 0 is the initial state of the environment
                assert action is None
                prompt_action_text = ""

            else:
                prompt_action_text = action_to_prompt_action_text(action)

            text_obs = generate_text_obs(obs, info)
            step_text = prompt_preprocessor(prompt_action_text + text_obs)

            in_context_examples += step_text

            if done:
                if reward > 0:
                    in_context_examples += success_marker()
                else:
                    in_context_examples += failure_marker()

            else:
                # in all envs reward is given in the end
                # in the initial step rewards is None
                assert reward == 0 or (step_i == 0 and reward is None)

    print("-------------------------- IN CONTEXT EXAMPLES --------------------------")
    print(in_context_examples)
    print("-------------------------------------------------------------------------")
    exit()

    return in_context_examples


if __name__ == "__main__":

    # Parse arguments
    parser = argparse.ArgumentParser()
    parser.add_argument("--model", required=False,
                        help="text-ada-001")
    parser.add_argument("--seed", type=int, default=0,
                        help="Seed of the first episode. The seed for the following episodes will be used in order: seed, seed + 1, ... seed + (n_episodes-1) (default: 0)")
    parser.add_argument("--max-steps", type=int, default=15,
                        help="max num of steps")
    parser.add_argument("--shift", type=int, default=0,
                        help="number of times the environment is reset at the beginning (default: 0)")
    parser.add_argument("--argmax", action="store_true", default=False,
                        help="select the action with highest probability (default: False)")
    parser.add_argument("--pause", type=float, default=0.5,
                        help="pause duration between two consequent actions of the agent (default: 0.5)")
    parser.add_argument("--env-name", type=str,
                        default="SocialAI-AsocialBoxInformationSeekingParamEnv-v1",
                        # default="SocialAI-ColorBoxesLLMCSParamEnv-v1",
                        required=False,
                        help="env name")
    parser.add_argument("--in-context-path", type=str,
                        # old
                        # default='llm_data/in_context_asocial_box.txt'
                        # default='llm_data/in_context_color_boxes.txt',
                        # new
                        # asocial box
                        default='llm_data/in_context_examples/in_context_asocialbox_SocialAI-AsocialBoxInformationSeekingParamEnv-v1_2023_07_19_19_28_48/episodes.pkl',
                        # colorbox
                        # default='llm_data/in_context_examples/in_context_colorbox_SocialAI-ColorBoxesLLMCSParamEnv-v1_2023_07_20_13_11_54/episodes.pkl',
                        required=False,
                        help="path to in context examples")
    parser.add_argument("--episodes", type=int, default=10,
                        help="number of episodes to visualize")
    parser.add_argument("--env-args", nargs='*', default=None)
    parser.add_argument("--agent_view", default=False, help="draw the agent sees (partially observable view)", action='store_true' )
    parser.add_argument("--tile_size", type=int, help="size at which to render tiles", default=32 )
    parser.add_argument("--mask-unobserved", default=False, help="mask cells that are not observed by the agent", action='store_true' )
    parser.add_argument("--log", type=str, default="llm_log/episodes_log", help="log from the run", required=False)
    parser.add_argument("--feed-full-ep", default=False, help="weather to append the whole episode to the prompt", action='store_true')
    parser.add_argument("--last-n", type=int, help="how many last steps to provide in observation (if not feed-full-ep)", default=3)
    parser.add_argument("--skip-check", default=False, help="Don't estimate the price.", action="store_true")

    args = parser.parse_args()

    # Set seed for all randomness sources

    seed(args.seed)

    model = args.model


    in_context_examples_path = args.in_context_path

    # test for paper: remove later
    if "asocialbox" in in_context_examples_path:
        assert args.env_name == "SocialAI-AsocialBoxInformationSeekingParamEnv-v1"
    elif "colorbox" in in_context_examples_path:
        assert args.env_name == "SocialAI-ColorBoxesLLMCSParamEnv-v1"


    print("env name:", args.env_name)
    print("examples:", in_context_examples_path)
    print("model:", args.model)

    # datetime
    now = datetime.now()
    datetime_string = now.strftime("%d_%m_%Y_%H:%M:%S")
    print(datetime_string)

    # log filenames

    log_folder = args.log+"_"+datetime_string+"/"
    os.mkdir(log_folder)
    evaluation_log_filename = log_folder+"evaluation_log.json"
    prompt_log_filename = log_folder + "prompt_log.txt"
    ep_h_log_filename = log_folder+"episode_history_query.txt"
    gif_savename = log_folder + "demo.gif"


    env_args = env_args_str_to_dict(args.env_args)
    env = make_env(args.env_name, args.seed, env_args)

    # env = gym.make(args.env_name, **env_args)
    print(f"Environment {args.env_name} and args: {env_args_str_to_dict(args.env_args)}\n")

    # Define agent
    print("Agent loaded\n")

    # prepare models
    model_instance = None

    if "text" in args.model or "gpt-3" in args.model or "gpt-4" in args.model:
        import openai
        openai.api_key = os.getenv("OPENAI_API_KEY")

    elif args.model in ["gpt2_large", "api_bloom"]:
        HF_TOKEN = os.getenv("HF_TOKEN")

    elif args.model in ["bloom_560m"]:
        from transformers import BloomForCausalLM
        from transformers import BloomTokenizerFast

        hf_tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom-560m", cache_dir=".cache/huggingface/")
        hf_model = BloomForCausalLM.from_pretrained("bigscience/bloom-560m", cache_dir=".cache/huggingface/")

    elif args.model in ["bloom"]:
        from transformers import BloomForCausalLM
        from transformers import BloomTokenizerFast

        hf_tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom", cache_dir=".cache/huggingface/")
        hf_model = BloomForCausalLM.from_pretrained("bigscience/bloom", cache_dir=".cache/huggingface/")

        model_instance = (hf_tokenizer, hf_model)

    with open(in_context_examples_path, "rb") as f:
        in_context_episodes = pickle.load(f)

    in_context_examples = load_in_context_examples(in_context_episodes)

    with open(prompt_log_filename, "a+") as f:
        f.write(datetime_string)

    with open(ep_h_log_filename, "a+") as f:
        f.write(datetime_string)

    full_episode_history = args.feed_full_ep
    last_n=args.last_n

    if full_episode_history:
        print("Full episode history.")
    else:
        print(f"Last {args.last_n} steps.")

    if not args.skip_check and not args.model in ["dummy", "random", "interactive"]:
        print(f"Estimating price for model {args.model}.")
        in_context_n_tokens = estimate_tokens_selenium(in_context_examples)

        n_in_context_steps = sum([len(ep) for ep in in_context_episodes])
        tokens_per_step = in_context_n_tokens / n_in_context_steps

        _, price = estimate_price(
            num_of_episodes=args.episodes,
            in_context_len=in_context_n_tokens,
            tokens_per_step=tokens_per_step,
            n_steps=args.max_steps,
            last_n=last_n,
            model=args.model,
            feed_episode_history=full_episode_history
        )
        input(f"You will spend: {price} dollars. ok?")

        # prepare frames list to save to gif
    frames = []

    assert args.max_steps <= 20

    success_rates = []
    # episodes start
    for episode in range(args.episodes):
        print("Episode:", episode)
        episode_history_text = new_episode_marker()

        success = False
        episode_seed = args.seed + episode
        env = make_env(args.env_name, episode_seed, env_args)

        with open(prompt_log_filename, "a+") as f:
            f.write("\n\n")

        observations = []
        actions = []
        for i in range(int(args.max_steps)):

            if i == 0:
                obs, reward, done, info = reset(env)
                prompt_action_text = ""

            else:
                with open(prompt_log_filename, "a+") as f:
                    f.write("\nnew prompt: -----------------------------------\n")
                    f.write(llm_prompt)

                # querry the model
                generation = generate(llm_prompt, args.model)

                # parse the action
                text_action = get_parsed_action(generation)

                # get the raw action
                action = text_action_to_action(text_action)

                # execute the action
                obs, reward, done, info = env.step(action)

                prompt_action_text = f"{action_query()} {text_action}\n"

                assert action_to_prompt_action_text(action) == prompt_action_text

                actions.append(prompt_action_text)

            text_obs = generate_text_obs(obs, info)
            observations.append(text_obs)

            step_text = prompt_preprocessor(prompt_action_text + text_obs)
            print("Step text:")
            print(step_text)

            episode_history_text += step_text  # append to history of this episode

            if full_episode_history:
                # feed full episode history
                llm_prompt = in_context_examples + episode_history_text + action_query()

            else:
                n = min(last_n, len(observations))
                obs = observations[-n:]
                act = (actions + [action_query()])[-n:]

                episode_text = "".join([o+a for o, a in zip(obs, act)])

                llm_prompt = in_context_examples + new_episode_marker() + episode_text

            llm_prompt = prompt_preprocessor(llm_prompt)

            # save the image
            env.render(mode="human")
            rgb_img = plt_2_rgb(env)
            frames.append(rgb_img)

            if env.current_env.box.blocked and not env.current_env.box.is_open:
                # target box is blocked -> apple can't be obtained
                # break to save compute
                break

            if done:
                # quadruple last frame to pause between episodes
                for i in range(3):
                    same_img = np.copy(rgb_img)
                    # toggle a pixel between frames to avoid cropping when going from gif to mp4
                    same_img[0, 0, 2] = 0 if (i % 2) == 0 else 255
                    frames.append(same_img)

                if reward > 0:
                    print("Success!")


                    episode_history_text += success_marker()
                    success = True
                else:
                    episode_history_text += failure_marker()

                with open(ep_h_log_filename, "a+") as f:
                    f.write("\nnew prompt: -----------------------------------\n")
                    f.write(episode_history_text)

                break

            else:
                with open(ep_h_log_filename, "a+") as f:
                    f.write("\nnew prompt: -----------------------------------\n")
                    f.write(episode_history_text)

        print(f"{'Success' if success else 'Failure'}")
        success_rates.append(success)

    mean_success_rate =  np.mean(success_rates)
    print("Success rate:", mean_success_rate)
    print(f"Saving gif to {gif_savename}.")
    mimsave(gif_savename, frames, duration=args.pause)

    print("Done.")

    log_data_dict = vars(args)
    log_data_dict["success_rates"] = success_rates
    log_data_dict["mean_success_rate"] = mean_success_rate

    print("Evaluation log: ", evaluation_log_filename)
    with open(evaluation_log_filename, "w") as f:
        f.write(json.dumps(log_data_dict))