Spaces:
Sleeping
Sleeping
File size: 33,692 Bytes
be5548b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 |
import argparse
import json
import requests
import time
import warnings
from n_tokens import estimate_price
import pickle
import numpy as np
import torch
from pathlib import Path
from utils.babyai_utils.baby_agent import load_agent
from utils import *
from models import *
import subprocess
import os
from matplotlib import pyplot as plt
from gym_minigrid.wrappers import *
from gym_minigrid.window import Window
from datetime import datetime
from imageio import mimsave
def new_episode_marker():
return "New episode.\n"
def success_marker():
return "Success!\n"
def failure_marker():
return "Failure!\n"
def action_query():
return "Act :"
def get_parsed_action(text_action):
"""
Parses the text generated by a model and extracts the action
"""
if "move forward" in text_action:
return "move forward"
elif "done" in text_action:
return "done"
elif "turn left" in text_action:
return "turn left"
elif "turn right" in text_action:
return "turn right"
elif "toggle" in text_action:
return "toggle"
elif "no_op" in text_action:
return "no_op"
else:
warnings.warn(f"Undefined action {text_action}")
return "no_op"
def action_to_prompt_action_text(action):
if np.allclose(action, [int(env.actions.forward), np.nan, np.nan], equal_nan=True):
# 2
text_action = "move forward"
elif np.allclose(action, [int(env.actions.left), np.nan, np.nan], equal_nan=True):
# 0
text_action = "turn left"
elif np.allclose(action, [int(env.actions.right), np.nan, np.nan], equal_nan=True):
# 1
text_action = "turn right"
elif np.allclose(action, [int(env.actions.toggle), np.nan, np.nan], equal_nan=True):
# 3
text_action = "toggle"
elif np.allclose(action, [int(env.actions.done), np.nan, np.nan], equal_nan=True):
# 4
text_action = "done"
elif np.allclose(action, [np.nan, np.nan, np.nan], equal_nan=True):
text_action = "no_op"
else:
warnings.warn(f"Undefined action {action}")
return "no_op"
return f"{action_query()} {text_action}\n"
def text_action_to_action(text_action):
# text_action = get_parsed_action(text_action)
if "move forward" == text_action:
action = [int(env.actions.forward), np.nan, np.nan]
elif "turn left" == text_action:
action = [int(env.actions.left), np.nan, np.nan]
elif "turn right" == text_action:
action = [int(env.actions.right), np.nan, np.nan]
elif "toggle" == text_action:
action = [int(env.actions.toggle), np.nan, np.nan]
elif "done" == text_action:
action = [int(env.actions.done), np.nan, np.nan]
elif "no_op" == text_action:
action = [np.nan, np.nan, np.nan]
return action
def prompt_preprocessor(llm_prompt):
# remove peer observations
lines = llm_prompt.split("\n")
new_lines = []
for line in lines:
if line.startswith("#"):
continue
elif line.startswith("Conversation"):
continue
elif "peer" in line:
caretaker = True
if caretaker:
# show only the location of the caretaker
# this is very ugly, todo: refactor this
assert "there is a" in line
start_index = line.index('there is a') + 11
new_line = line[:start_index] + 'caretaker'
new_lines.append(new_line)
else:
# no caretaker at all
if line.startswith("Obs :") and "peer" in line:
# remove only the peer descriptions
line = "Obs :"
new_lines.append(line)
else:
assert "peer" in line
elif "Caretaker:" in line:
line = line.replace("Caretaker:", "Caretaker says: ")
new_lines.append(line)
else:
new_lines.append(line)
return "\n".join(new_lines)
def generate_text_obs(obs, info):
text_observation = obs_to_text(info)
llm_prompt = "Obs : "
llm_prompt += "".join(text_observation)
# add utterances
if obs["utterance_history"] != "Conversation: \n":
utt_hist = obs['utterance_history']
utt_hist = utt_hist.replace("Conversation: \n","")
llm_prompt += utt_hist
return llm_prompt
def obs_to_text(info):
image, vis_mask = info["image"], info["vis_mask"]
carrying = info["carrying"]
agent_pos_vx, agent_pos_vy = info["agent_pos_vx"], info["agent_pos_vy"]
npc_actions_dict = info["npc_actions_dict"]
# (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color], state)
# State, 0: open, 1: closed, 2: locked
IDX_TO_COLOR = dict(zip(COLOR_TO_IDX.values(), COLOR_TO_IDX.keys()))
IDX_TO_OBJECT = dict(zip(OBJECT_TO_IDX.values(), OBJECT_TO_IDX.keys()))
list_textual_descriptions = []
if carrying is not None:
list_textual_descriptions.append("You carry a {} {}".format(carrying.color, carrying.type))
# agent_pos_vx, agent_pos_vy = self.get_view_coords(self.agent_pos[0], self.agent_pos[1])
view_field_dictionary = dict()
for i in range(image.shape[0]):
for j in range(image.shape[1]):
if image[i][j][0] != 0 and image[i][j][0] != 1 and image[i][j][0] != 2:
if i not in view_field_dictionary.keys():
view_field_dictionary[i] = dict()
view_field_dictionary[i][j] = image[i][j]
else:
view_field_dictionary[i][j] = image[i][j]
# Find the wall if any
# We describe a wall only if there is no objects between the agent and the wall in straight line
# Find wall in front
add_wall_descr = False
if add_wall_descr:
j = agent_pos_vy - 1
object_seen = False
while j >= 0 and not object_seen:
if image[agent_pos_vx][j][0] != 0 and image[agent_pos_vx][j][0] != 1:
if image[agent_pos_vx][j][0] == 2:
list_textual_descriptions.append(
f"A wall is {agent_pos_vy - j} steps in front of you. \n") # forward
object_seen = True
else:
object_seen = True
j -= 1
# Find wall left
i = agent_pos_vx - 1
object_seen = False
while i >= 0 and not object_seen:
if image[i][agent_pos_vy][0] != 0 and image[i][agent_pos_vy][0] != 1:
if image[i][agent_pos_vy][0] == 2:
list_textual_descriptions.append(
f"A wall is {agent_pos_vx - i} steps to the left. \n") # left
object_seen = True
else:
object_seen = True
i -= 1
# Find wall right
i = agent_pos_vx + 1
object_seen = False
while i < image.shape[0] and not object_seen:
if image[i][agent_pos_vy][0] != 0 and image[i][agent_pos_vy][0] != 1:
if image[i][agent_pos_vy][0] == 2:
list_textual_descriptions.append(
f"A wall is {i - agent_pos_vx} steps to the right. \n") # right
object_seen = True
else:
object_seen = True
i += 1
# list_textual_descriptions.append("You see the following objects: ")
# returns the position of seen objects relative to you
for i in view_field_dictionary.keys():
for j in view_field_dictionary[i].keys():
if i != agent_pos_vx or j != agent_pos_vy:
object = view_field_dictionary[i][j]
# # don't show npc
# if IDX_TO_OBJECT[object[0]] == "npc":
# continue
front_dist = agent_pos_vy - j
left_right_dist = i - agent_pos_vx
loc_descr = ""
if front_dist == 1 and left_right_dist == 0:
loc_descr += "Right in front of you "
elif left_right_dist == 1 and front_dist == 0:
loc_descr += "Just to the right of you"
elif left_right_dist == -1 and front_dist == 0:
loc_descr += "Just to the left of you"
else:
front_str = str(front_dist) + " steps in front of you " if front_dist > 0 else ""
loc_descr += front_str
suff = "s" if abs(left_right_dist) > 0 else ""
and_ = "and" if loc_descr != "" else ""
if left_right_dist < 0:
left_right_str = f"{and_} {-left_right_dist} step{suff} to the left"
loc_descr += left_right_str
elif left_right_dist > 0:
left_right_str = f"{and_} {left_right_dist} step{suff} to the right"
loc_descr += left_right_str
else:
left_right_str = ""
loc_descr += left_right_str
loc_descr += f" there is a "
obj_type = IDX_TO_OBJECT[object[0]]
if obj_type == "npc":
IDX_TO_STATE = {0: 'friendly', 1: 'antagonistic'}
description = f"{IDX_TO_STATE[object[2]]} {IDX_TO_COLOR[object[1]]} peer. "
# gaze
gaze_dir = {
0: "towards you",
1: "to the left of you",
2: "in the same direction as you",
3: "to the right of you",
}
description += f"It is looking {gaze_dir[object[3]]}. "
# point
point_dir = {
0: "towards you",
1: "to the left of you",
2: "in the same direction as you",
3: "to the right of you",
}
if object[4] != 255:
description += f"It is pointing {point_dir[object[4]]}. "
# last action
last_action = {v: k for k, v in npc_actions_dict.items()}[object[5]]
last_action = {
"go_forward": "foward",
"rotate_left": "turn left",
"rotate_right": "turn right",
"toggle_action": "toggle",
"point_stop_point": "stop pointing",
"point_E": "",
"point_S": "",
"point_W": "",
"point_N": "",
"stop_point": "stop pointing",
"no_op": ""
}[last_action]
if last_action not in ["no_op", ""]:
description += f"It's last action is {last_action}. "
elif obj_type in ["switch", "apple", "generatorplatform", "marble", "marbletee", "fence"]:
# todo: this assumes that Switch.no_light == True
description = f"{IDX_TO_COLOR[object[1]]} {IDX_TO_OBJECT[object[0]]} "
assert object[2:].mean() == 0
elif obj_type == "lockablebox":
IDX_TO_STATE = {0: 'open', 1: 'closed', 2: 'locked'}
description = f"{IDX_TO_STATE[object[2]]} {IDX_TO_COLOR[object[1]]} {IDX_TO_OBJECT[object[0]]} "
assert object[3:].mean() == 0
elif obj_type == "applegenerator":
IDX_TO_STATE = {1: 'square', 2: 'round'}
description = f"{IDX_TO_STATE[object[2]]} {IDX_TO_COLOR[object[1]]} {IDX_TO_OBJECT[object[0]]} "
assert object[3:].mean() == 0
elif obj_type == "remotedoor":
IDX_TO_STATE = {0: 'open', 1: 'closed'}
description = f"{IDX_TO_STATE[object[2]]} {IDX_TO_COLOR[object[1]]} {IDX_TO_OBJECT[object[0]]} "
assert object[3:].mean() == 0
elif obj_type == "door":
IDX_TO_STATE = {0: 'open', 1: 'closed', 2: 'locked'}
description = f"{IDX_TO_STATE[object[2]]} {IDX_TO_COLOR[object[1]]} {IDX_TO_OBJECT[object[0]]} "
assert object[3:].mean() == 0
elif obj_type == "lever":
IDX_TO_STATE = {1: 'activated', 0: 'unactivated'}
if object[3] == 255:
countdown_txt = ""
else:
countdown_txt = f"with {object[3]} timesteps left. "
description = f"{IDX_TO_STATE[object[2]]} {IDX_TO_COLOR[object[1]]} {IDX_TO_OBJECT[object[0]]} {countdown_txt}"
assert object[4:].mean() == 0
else:
raise ValueError(f"Undefined object type {obj_type}")
full_destr = loc_descr + description + "\n"
list_textual_descriptions.append(full_destr)
if len(list_textual_descriptions) == 0:
list_textual_descriptions.append("\n")
return list_textual_descriptions
def plt_2_rgb(env):
# data = np.frombuffer(env.window.fig.canvas.tostring_rgb(), dtype=np.uint8)
# data = data.reshape(env.window.fig.canvas.get_width_height()[::-1] + (3,))
width, height = env.window.fig.get_size_inches() * env.window.fig.get_dpi()
data = np.fromstring(env.window.fig.canvas.tostring_rgb(), dtype='uint8').reshape(int(height), int(width), 3)
return data
def reset(env):
env.reset()
# a dirty trick just to get obs and info
return env.step([np.nan, np.nan, np.nan])
# return step("no_op")
def generate(text_input, model):
# return "(a) move forward"
if model == "dummy":
print("dummy action forward")
return "move forward"
elif model == "interactive":
return input("Enter action:")
elif model == "random":
print("random agent")
print("PROMPT:")
print(text_input)
return random.choice([
"move forward",
"turn left",
"turn right",
"toggle",
])
elif model in ["gpt-3.5-turbo-0301", "gpt-3.5-turbo-0613", "gpt-4-0613", "gpt-4-0314"]:
while True:
try:
c = openai.ChatCompletion.create(
model=model,
messages=[
# {"role": "system", "content": ""},
# {"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."},
# {"role": "user", "content": "Continue the following text in the most logical way.\n"+text_input}
# {"role": "system", "content":
# "You are an agent and can use the following actions: 'move forward', 'toggle', 'turn left', 'turn right', 'done'."
# # "The caretaker will say the color of the box which you should open. Turn until you find this box and toggle it when it is right in front of it."
# # "Then an apple will appear and you can toggle it to succeed."
# },
{"role": "user", "content": text_input}
],
max_tokens=3,
n=1,
temperature=0.0,
request_timeout=30,
)
break
except Exception as e:
print(e)
print("Pausing")
time.sleep(10)
continue
print("->LLM generation: ", c['choices'][0]['message']['content'])
return c['choices'][0]['message']['content']
elif re.match(r"text-.*-\d{3}", model) or model in ["gpt-3.5-turbo-instruct-0914"]:
while True:
try:
response = openai.Completion.create(
model=model,
prompt=text_input,
# temperature=0.7,
temperature=0.0,
max_tokens=3,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
timeout=30
)
break
except Exception as e:
print(e)
print("Pausing")
time.sleep(10)
continue
choices = response["choices"]
assert len(choices) == 1
return choices[0]["text"].strip().lower() # remove newline from the end
elif model in ["gpt2_large", "api_bloom"]:
# HF_TOKEN = os.getenv("HF_TOKEN")
if model == "gpt2_large":
API_URL = "https://api-inference.huggingface.co/models/gpt2-large"
elif model == "api_bloom":
API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom"
else:
raise ValueError(f"Undefined model {model}.")
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
def query(text_prompt, n_tokens=3):
input = text_prompt
# make n_tokens request and append the output each time - one request generates one token
for _ in range(n_tokens):
# prepare request
payload = {
"inputs": input,
"parameters": {
"do_sample": False,
'temperature': 0,
'wait_for_model': True,
# "max_length": 500, # for gpt2
# "max_new_tokens": 250 # fot gpt2-xl
},
}
data = json.dumps(payload)
# request
response = requests.request("POST", API_URL, headers=headers, data=data)
response_json = json.loads(response.content.decode("utf-8"))
if type(response_json) is list and len(response_json) == 1:
# generated_text contains the input + the response
response_full_text = response_json[0]['generated_text']
# we use this as the next input
input = response_full_text
else:
print("Invalid request to huggingface api")
from IPython import embed; embed()
# remove the prompt from the beginning
assert response_full_text.startswith(text_prompt)
response_text = response_full_text[len(text_prompt):]
return response_text
response = query(text_input).strip().lower()
return response
elif model in ["bloom_560m"]:
# from transformers import BloomForCausalLM
# from transformers import BloomTokenizerFast
#
# tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom-560m", cache_dir=".cache/huggingface/")
# model = BloomForCausalLM.from_pretrained("bigscience/bloom-560m", cache_dir=".cache/huggingface/")
inputs = hf_tokenizer(text_input, return_tensors="pt")
# 3 words
result_length = inputs['input_ids'].shape[-1]+3
full_output = hf_tokenizer.decode(hf_model.generate(inputs["input_ids"], max_length=result_length)[0])
assert full_output.startswith(text_input)
response = full_output[len(text_input):]
response = response.strip().lower()
return response
else:
raise ValueError("Unknown model.")
def estimate_tokens_selenium(prompt):
# selenium is used because python3.9 is needed for tiktoken
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
import time
# Initialize the WebDriver instance
options = webdriver.ChromeOptions()
options.add_argument('headless')
# set up the driver
driver = webdriver.Chrome(options=options)
# Navigate to the website
driver.get('https://platform.openai.com/tokenizer')
text_input = driver.find_element(By.XPATH, '/html/body/div[1]/div[1]/div/div[2]/div[3]/textarea')
text_input.clear()
text_input.send_keys(prompt)
n_tokens = 0
while n_tokens == 0:
time.sleep(1)
# Wait for the response to be loaded
wait = WebDriverWait(driver, 10)
response = wait.until(
EC.presence_of_element_located((By.CSS_SELECTOR, 'div.tokenizer-stat:nth-child(1) > div:nth-child(2)')))
n_tokens = int(response.text.replace(",", ""))
# Close the WebDriver instance
driver.quit()
return n_tokens
def load_in_context_examples(in_context_episodes):
in_context_examples = ""
print(f'Loading {len(in_context_episodes)} examples.')
for episode_data in in_context_episodes:
in_context_examples += new_episode_marker()
for step_i, step_data in enumerate(episode_data):
action = step_data["action"]
info = step_data["info"]
obs = step_data["obs"]
reward = step_data["reward"]
done = step_data["done"]
if step_i == 0:
# step 0 is the initial state of the environment
assert action is None
prompt_action_text = ""
else:
prompt_action_text = action_to_prompt_action_text(action)
text_obs = generate_text_obs(obs, info)
step_text = prompt_preprocessor(prompt_action_text + text_obs)
in_context_examples += step_text
if done:
if reward > 0:
in_context_examples += success_marker()
else:
in_context_examples += failure_marker()
else:
# in all envs reward is given in the end
# in the initial step rewards is None
assert reward == 0 or (step_i == 0 and reward is None)
print("-------------------------- IN CONTEXT EXAMPLES --------------------------")
print(in_context_examples)
print("-------------------------------------------------------------------------")
exit()
return in_context_examples
if __name__ == "__main__":
# Parse arguments
parser = argparse.ArgumentParser()
parser.add_argument("--model", required=False,
help="text-ada-001")
parser.add_argument("--seed", type=int, default=0,
help="Seed of the first episode. The seed for the following episodes will be used in order: seed, seed + 1, ... seed + (n_episodes-1) (default: 0)")
parser.add_argument("--max-steps", type=int, default=15,
help="max num of steps")
parser.add_argument("--shift", type=int, default=0,
help="number of times the environment is reset at the beginning (default: 0)")
parser.add_argument("--argmax", action="store_true", default=False,
help="select the action with highest probability (default: False)")
parser.add_argument("--pause", type=float, default=0.5,
help="pause duration between two consequent actions of the agent (default: 0.5)")
parser.add_argument("--env-name", type=str,
default="SocialAI-AsocialBoxInformationSeekingParamEnv-v1",
# default="SocialAI-ColorBoxesLLMCSParamEnv-v1",
required=False,
help="env name")
parser.add_argument("--in-context-path", type=str,
# old
# default='llm_data/in_context_asocial_box.txt'
# default='llm_data/in_context_color_boxes.txt',
# new
# asocial box
default='llm_data/in_context_examples/in_context_asocialbox_SocialAI-AsocialBoxInformationSeekingParamEnv-v1_2023_07_19_19_28_48/episodes.pkl',
# colorbox
# default='llm_data/in_context_examples/in_context_colorbox_SocialAI-ColorBoxesLLMCSParamEnv-v1_2023_07_20_13_11_54/episodes.pkl',
required=False,
help="path to in context examples")
parser.add_argument("--episodes", type=int, default=10,
help="number of episodes to visualize")
parser.add_argument("--env-args", nargs='*', default=None)
parser.add_argument("--agent_view", default=False, help="draw the agent sees (partially observable view)", action='store_true' )
parser.add_argument("--tile_size", type=int, help="size at which to render tiles", default=32 )
parser.add_argument("--mask-unobserved", default=False, help="mask cells that are not observed by the agent", action='store_true' )
parser.add_argument("--log", type=str, default="llm_log/episodes_log", help="log from the run", required=False)
parser.add_argument("--feed-full-ep", default=False, help="weather to append the whole episode to the prompt", action='store_true')
parser.add_argument("--last-n", type=int, help="how many last steps to provide in observation (if not feed-full-ep)", default=3)
parser.add_argument("--skip-check", default=False, help="Don't estimate the price.", action="store_true")
args = parser.parse_args()
# Set seed for all randomness sources
seed(args.seed)
model = args.model
in_context_examples_path = args.in_context_path
# test for paper: remove later
if "asocialbox" in in_context_examples_path:
assert args.env_name == "SocialAI-AsocialBoxInformationSeekingParamEnv-v1"
elif "colorbox" in in_context_examples_path:
assert args.env_name == "SocialAI-ColorBoxesLLMCSParamEnv-v1"
print("env name:", args.env_name)
print("examples:", in_context_examples_path)
print("model:", args.model)
# datetime
now = datetime.now()
datetime_string = now.strftime("%d_%m_%Y_%H:%M:%S")
print(datetime_string)
# log filenames
log_folder = args.log+"_"+datetime_string+"/"
os.mkdir(log_folder)
evaluation_log_filename = log_folder+"evaluation_log.json"
prompt_log_filename = log_folder + "prompt_log.txt"
ep_h_log_filename = log_folder+"episode_history_query.txt"
gif_savename = log_folder + "demo.gif"
env_args = env_args_str_to_dict(args.env_args)
env = make_env(args.env_name, args.seed, env_args)
# env = gym.make(args.env_name, **env_args)
print(f"Environment {args.env_name} and args: {env_args_str_to_dict(args.env_args)}\n")
# Define agent
print("Agent loaded\n")
# prepare models
model_instance = None
if "text" in args.model or "gpt-3" in args.model or "gpt-4" in args.model:
import openai
openai.api_key = os.getenv("OPENAI_API_KEY")
elif args.model in ["gpt2_large", "api_bloom"]:
HF_TOKEN = os.getenv("HF_TOKEN")
elif args.model in ["bloom_560m"]:
from transformers import BloomForCausalLM
from transformers import BloomTokenizerFast
hf_tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom-560m", cache_dir=".cache/huggingface/")
hf_model = BloomForCausalLM.from_pretrained("bigscience/bloom-560m", cache_dir=".cache/huggingface/")
elif args.model in ["bloom"]:
from transformers import BloomForCausalLM
from transformers import BloomTokenizerFast
hf_tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom", cache_dir=".cache/huggingface/")
hf_model = BloomForCausalLM.from_pretrained("bigscience/bloom", cache_dir=".cache/huggingface/")
model_instance = (hf_tokenizer, hf_model)
with open(in_context_examples_path, "rb") as f:
in_context_episodes = pickle.load(f)
in_context_examples = load_in_context_examples(in_context_episodes)
with open(prompt_log_filename, "a+") as f:
f.write(datetime_string)
with open(ep_h_log_filename, "a+") as f:
f.write(datetime_string)
full_episode_history = args.feed_full_ep
last_n=args.last_n
if full_episode_history:
print("Full episode history.")
else:
print(f"Last {args.last_n} steps.")
if not args.skip_check and not args.model in ["dummy", "random", "interactive"]:
print(f"Estimating price for model {args.model}.")
in_context_n_tokens = estimate_tokens_selenium(in_context_examples)
n_in_context_steps = sum([len(ep) for ep in in_context_episodes])
tokens_per_step = in_context_n_tokens / n_in_context_steps
_, price = estimate_price(
num_of_episodes=args.episodes,
in_context_len=in_context_n_tokens,
tokens_per_step=tokens_per_step,
n_steps=args.max_steps,
last_n=last_n,
model=args.model,
feed_episode_history=full_episode_history
)
input(f"You will spend: {price} dollars. ok?")
# prepare frames list to save to gif
frames = []
assert args.max_steps <= 20
success_rates = []
# episodes start
for episode in range(args.episodes):
print("Episode:", episode)
episode_history_text = new_episode_marker()
success = False
episode_seed = args.seed + episode
env = make_env(args.env_name, episode_seed, env_args)
with open(prompt_log_filename, "a+") as f:
f.write("\n\n")
observations = []
actions = []
for i in range(int(args.max_steps)):
if i == 0:
obs, reward, done, info = reset(env)
prompt_action_text = ""
else:
with open(prompt_log_filename, "a+") as f:
f.write("\nnew prompt: -----------------------------------\n")
f.write(llm_prompt)
# querry the model
generation = generate(llm_prompt, args.model)
# parse the action
text_action = get_parsed_action(generation)
# get the raw action
action = text_action_to_action(text_action)
# execute the action
obs, reward, done, info = env.step(action)
prompt_action_text = f"{action_query()} {text_action}\n"
assert action_to_prompt_action_text(action) == prompt_action_text
actions.append(prompt_action_text)
text_obs = generate_text_obs(obs, info)
observations.append(text_obs)
step_text = prompt_preprocessor(prompt_action_text + text_obs)
print("Step text:")
print(step_text)
episode_history_text += step_text # append to history of this episode
if full_episode_history:
# feed full episode history
llm_prompt = in_context_examples + episode_history_text + action_query()
else:
n = min(last_n, len(observations))
obs = observations[-n:]
act = (actions + [action_query()])[-n:]
episode_text = "".join([o+a for o, a in zip(obs, act)])
llm_prompt = in_context_examples + new_episode_marker() + episode_text
llm_prompt = prompt_preprocessor(llm_prompt)
# save the image
env.render(mode="human")
rgb_img = plt_2_rgb(env)
frames.append(rgb_img)
if env.current_env.box.blocked and not env.current_env.box.is_open:
# target box is blocked -> apple can't be obtained
# break to save compute
break
if done:
# quadruple last frame to pause between episodes
for i in range(3):
same_img = np.copy(rgb_img)
# toggle a pixel between frames to avoid cropping when going from gif to mp4
same_img[0, 0, 2] = 0 if (i % 2) == 0 else 255
frames.append(same_img)
if reward > 0:
print("Success!")
episode_history_text += success_marker()
success = True
else:
episode_history_text += failure_marker()
with open(ep_h_log_filename, "a+") as f:
f.write("\nnew prompt: -----------------------------------\n")
f.write(episode_history_text)
break
else:
with open(ep_h_log_filename, "a+") as f:
f.write("\nnew prompt: -----------------------------------\n")
f.write(episode_history_text)
print(f"{'Success' if success else 'Failure'}")
success_rates.append(success)
mean_success_rate = np.mean(success_rates)
print("Success rate:", mean_success_rate)
print(f"Saving gif to {gif_savename}.")
mimsave(gif_savename, frames, duration=args.pause)
print("Done.")
log_data_dict = vars(args)
log_data_dict["success_rates"] = success_rates
log_data_dict["mean_success_rate"] = mean_success_rate
print("Evaluation log: ", evaluation_log_filename)
with open(evaluation_log_filename, "w") as f:
f.write(json.dumps(log_data_dict))
|