Spaces:
Running
Running
File size: 14,857 Bytes
be5548b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.distributions.categorical import Categorical
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
from utils.babyai_utils.supervised_losses import required_heads
import torch_ac
# From https://github.com/ikostrikov/pytorch-a2c-ppo-acktr/blob/master/model.py
def initialize_parameters(m):
classname = m.__class__.__name__
if classname.find('Linear') != -1:
m.weight.data.normal_(0, 1)
m.weight.data *= 1 / torch.sqrt(m.weight.data.pow(2).sum(1, keepdim=True))
if m.bias is not None:
m.bias.data.fill_(0)
# Inspired by FiLMedBlock from https://arxiv.org/abs/1709.07871
class FiLM(nn.Module):
def __init__(self, in_features, out_features, in_channels, imm_channels):
super().__init__()
self.conv1 = nn.Conv2d(
in_channels=in_channels, out_channels=imm_channels,
kernel_size=(3, 3), padding=1)
self.bn1 = nn.BatchNorm2d(imm_channels)
self.conv2 = nn.Conv2d(
in_channels=imm_channels, out_channels=out_features,
kernel_size=(3, 3), padding=1)
self.bn2 = nn.BatchNorm2d(out_features)
self.weight = nn.Linear(in_features, out_features)
self.bias = nn.Linear(in_features, out_features)
self.apply(initialize_parameters)
def forward(self, x, y):
x = F.relu(self.bn1(self.conv1(x)))
x = self.conv2(x)
weight = self.weight(y).unsqueeze(2).unsqueeze(3)
bias = self.bias(y).unsqueeze(2).unsqueeze(3)
out = x * weight + bias
return F.relu(self.bn2(out))
class ImageBOWEmbedding(nn.Module):
def __init__(self, space, embedding_dim):
super().__init__()
self.max_value = max(space)
self.space = space
self.embedding_dim = embedding_dim
self.embedding = nn.Embedding(len(self.space) * self.max_value, embedding_dim)
self.apply(initialize_parameters)
def forward(self, inputs):
offsets = torch.Tensor([x * self.max_value for x in range(self.space[-1])]).to(inputs.device)
inputs = (inputs + offsets[None, :, None, None]).long()
return self.embedding(inputs).sum(1).permute(0, 3, 1, 2)
#notes: what they call instr is what we call text
#class ACModel(nn.Module, babyai.rl.RecurrentACModel):
class Baby11ACModel(nn.Module, torch_ac.RecurrentACModel):
def __init__(self, obs_space, action_space,
image_dim=128, memory_dim=128, instr_dim=128,
use_instr=False, lang_model="gru", use_memory=False,
arch="bow_endpool_res", aux_info=None):
super().__init__()
# store config
self.config = locals()
endpool = 'endpool' in arch
use_bow = 'bow' in arch
pixel = 'pixel' in arch
self.res = 'res' in arch
# Decide which components are enabled
self.use_instr = use_instr
self.use_memory = use_memory
self.arch = arch
self.lang_model = lang_model
self.aux_info = aux_info
self.env_action_space = action_space
self.model_raw_action_space = action_space
if self.res and image_dim != 128:
raise ValueError(f"image_dim is {image_dim}, expected 128")
self.image_dim = image_dim
self.memory_dim = memory_dim
self.instr_dim = instr_dim
self.obs_space = obs_space
# transform given 3d obs_space into what babyai11 baseline uses, i.e. 1d embedding size
n = obs_space["image"][0]
m = obs_space["image"][1]
nb_img_channels = self.obs_space['image'][2]
self.obs_space = ((n-1)//2-2)*((m-1)//2-2)*64
for part in self.arch.split('_'):
if part not in ['original', 'bow', 'pixels', 'endpool', 'res']:
raise ValueError("Incorrect architecture name: {}".format(self.arch))
# if not self.use_instr:
# raise ValueError("FiLM architecture can be used when instructions are enabled")
self.image_conv = nn.Sequential(*[
*([ImageBOWEmbedding(obs_space['image'], 128)] if use_bow else []),
*([nn.Conv2d(
in_channels=nb_img_channels, out_channels=128, kernel_size=(8, 8),
stride=8, padding=0)] if pixel else []),
nn.Conv2d(
in_channels=128 if use_bow or pixel else nb_img_channels, out_channels=128,
kernel_size=(3, 3) if endpool else (2, 2), stride=1, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
*([] if endpool else [nn.MaxPool2d(kernel_size=(2, 2), stride=2)]),
nn.Conv2d(in_channels=128, out_channels=128, kernel_size=(3, 3), padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
*([] if endpool else [nn.MaxPool2d(kernel_size=(2, 2), stride=2)])
])
self.film_pool = nn.MaxPool2d(kernel_size=(7, 7) if endpool else (2, 2), stride=2)
# Define instruction embedding
if self.use_instr:
if self.lang_model in ['gru', 'bigru', 'attgru']:
#self.word_embedding = nn.Embedding(obs_space["instr"], self.instr_dim)
self.word_embedding = nn.Embedding(obs_space["text"], self.instr_dim)
if self.lang_model in ['gru', 'bigru', 'attgru']:
gru_dim = self.instr_dim
if self.lang_model in ['bigru', 'attgru']:
gru_dim //= 2
self.instr_rnn = nn.GRU(
self.instr_dim, gru_dim, batch_first=True,
bidirectional=(self.lang_model in ['bigru', 'attgru']))
self.final_instr_dim = self.instr_dim
else:
kernel_dim = 64
kernel_sizes = [3, 4]
self.instr_convs = nn.ModuleList([
nn.Conv2d(1, kernel_dim, (K, self.instr_dim)) for K in kernel_sizes])
self.final_instr_dim = kernel_dim * len(kernel_sizes)
if self.lang_model == 'attgru':
self.memory2key = nn.Linear(self.memory_size, self.final_instr_dim)
num_module = 2
self.controllers = []
for ni in range(num_module):
mod = FiLM(
in_features=self.final_instr_dim,
out_features=128 if ni < num_module-1 else self.image_dim,
in_channels=128, imm_channels=128)
self.controllers.append(mod)
self.add_module('FiLM_' + str(ni), mod)
# Define memory and resize image embedding
self.embedding_size = self.image_dim
if self.use_memory:
self.memory_rnn = nn.LSTMCell(self.image_dim, self.memory_dim)
self.embedding_size = self.semi_memory_size
# Define actor's model
self.actor = nn.Sequential(
nn.Linear(self.embedding_size, 64),
nn.Tanh(),
nn.Linear(64, action_space.nvec[0])
)
# Define critic's model
self.critic = nn.Sequential(
nn.Linear(self.embedding_size, 64),
nn.Tanh(),
nn.Linear(64, 1)
)
# Initialize parameters correctly
self.apply(initialize_parameters)
# Define head for extra info
if self.aux_info:
self.extra_heads = None
self.add_heads()
def add_heads(self):
'''
When using auxiliary tasks, the environment yields at each step some binary, continous, or multiclass
information. The agent needs to predict those information. This function add extra heads to the model
that output the predictions. There is a head per extra information (the head type depends on the extra
information type).
'''
self.extra_heads = nn.ModuleDict()
for info in self.aux_info:
if required_heads[info] == 'binary':
self.extra_heads[info] = nn.Linear(self.embedding_size, 1)
elif required_heads[info].startswith('multiclass'):
n_classes = int(required_heads[info].split('multiclass')[-1])
self.extra_heads[info] = nn.Linear(self.embedding_size, n_classes)
elif required_heads[info].startswith('continuous'):
if required_heads[info].endswith('01'):
self.extra_heads[info] = nn.Sequential(nn.Linear(self.embedding_size, 1), nn.Sigmoid())
else:
raise ValueError('Only continous01 is implemented')
else:
raise ValueError('Type not supported')
# initializing these parameters independently is done in order to have consistency of results when using
# supervised-loss-coef = 0 and when not using any extra binary information
self.extra_heads[info].apply(initialize_parameters)
def add_extra_heads_if_necessary(self, aux_info):
'''
This function allows using a pre-trained model without aux_info and add aux_info to it and still make
it possible to finetune.
'''
try:
if not hasattr(self, 'aux_info') or not set(self.aux_info) == set(aux_info):
self.aux_info = aux_info
self.add_heads()
except Exception:
raise ValueError('Could not add extra heads')
@property
def memory_size(self):
return 2 * self.semi_memory_size
@property
def semi_memory_size(self):
return self.memory_dim
def forward(self, obs, memory, instr_embedding=None):
if self.use_instr and instr_embedding is None:
#instr_embedding = self._get_instr_embedding(obs.instr)
instr_embedding = self._get_instr_embedding(obs.text)
if self.use_instr and self.lang_model == "attgru":
# outputs: B x L x D
# memory: B x M
#mask = (obs.instr != 0).float()
mask = (obs.text != 0).float()
# The mask tensor has the same length as obs.instr, and
# thus can be both shorter and longer than instr_embedding.
# It can be longer if instr_embedding is computed
# for a subbatch of obs.instr.
# It can be shorter if obs.instr is a subbatch of
# the batch that instr_embeddings was computed for.
# Here, we make sure that mask and instr_embeddings
# have equal length along dimension 1.
mask = mask[:, :instr_embedding.shape[1]]
instr_embedding = instr_embedding[:, :mask.shape[1]]
keys = self.memory2key(memory)
pre_softmax = (keys[:, None, :] * instr_embedding).sum(2) + 1000 * mask
attention = F.softmax(pre_softmax, dim=1)
instr_embedding = (instr_embedding * attention[:, :, None]).sum(1)
x = torch.transpose(torch.transpose(obs.image, 1, 3), 2, 3)
if 'pixel' in self.arch:
x /= 256.0
x = self.image_conv(x)
if self.use_instr:
for controller in self.controllers:
out = controller(x, instr_embedding)
if self.res:
out += x
x = out
x = F.relu(self.film_pool(x))
x = x.reshape(x.shape[0], -1)
if self.use_memory:
hidden = (memory[:, :self.semi_memory_size], memory[:, self.semi_memory_size:])
hidden = self.memory_rnn(x, hidden)
embedding = hidden[0]
memory = torch.cat(hidden, dim=1)
else:
embedding = x
if hasattr(self, 'aux_info') and self.aux_info:
extra_predictions = {info: self.extra_heads[info](embedding) for info in self.extra_heads}
else:
extra_predictions = dict()
x = self.actor(embedding)
dist = Categorical(logits=F.log_softmax(x, dim=1))
x = self.critic(embedding)
value = x.squeeze(1)
#return {'dist': dist, 'value': value, 'memory': memory, 'extra_predictions': extra_predictions}
return [dist], value, memory
def _get_instr_embedding(self, instr):
lengths = (instr != 0).sum(1).long()
if self.lang_model == 'gru':
out, _ = self.instr_rnn(self.word_embedding(instr))
hidden = out[range(len(lengths)), lengths-1, :]
return hidden
elif self.lang_model in ['bigru', 'attgru']:
masks = (instr != 0).float()
if lengths.shape[0] > 1:
seq_lengths, perm_idx = lengths.sort(0, descending=True)
iperm_idx = torch.LongTensor(perm_idx.shape).fill_(0)
if instr.is_cuda: iperm_idx = iperm_idx.cuda()
for i, v in enumerate(perm_idx):
iperm_idx[v.data] = i
inputs = self.word_embedding(instr)
inputs = inputs[perm_idx]
inputs = pack_padded_sequence(inputs, seq_lengths.data.cpu().numpy(), batch_first=True)
outputs, final_states = self.instr_rnn(inputs)
else:
instr = instr[:, 0:lengths[0]]
outputs, final_states = self.instr_rnn(self.word_embedding(instr))
iperm_idx = None
final_states = final_states.transpose(0, 1).contiguous()
final_states = final_states.view(final_states.shape[0], -1)
if iperm_idx is not None:
outputs, _ = pad_packed_sequence(outputs, batch_first=True)
outputs = outputs[iperm_idx]
final_states = final_states[iperm_idx]
return outputs if self.lang_model == 'attgru' else final_states
else:
ValueError("Undefined instruction architecture: {}".format(self.use_instr))
# add action sampling to fit our interaction pipeline
def sample_action(self, dist):
return torch.stack([d.sample() for d in dist], dim=1)
# add construct final action to fit our interaction pipeline
def construct_final_action(self, action):
return action
# add calculate log probs to fit our interaction pipeline
def calculate_log_probs(self, dist, action):
return torch.stack([d.log_prob(action[:, i]) for i, d in enumerate(dist)], dim=1)
# add calculate action masks to fit our interaction pipeline
def calculate_action_masks(self, action):
mask = torch.ones_like(action)
assert action.shape == mask.shape
return mask
def get_config_dict(self):
del self.config['__class__']
self.config['self'] = str(self.config['self'])
self.config['action_space'] = self.config['action_space'].nvec.tolist()
return self.config
|