Spaces:
Running
Running
File size: 22,418 Bytes
be5548b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
#!/usr/bin/env python
import seaborn
import numpy as np
import os
from collections import OrderedDict
import pandas as pd
import matplotlib.pyplot as plt
import sys
from termcolor import cprint
# Load data
# Global vars for tracking and labeling data at load time.
exp_idx = 0
label_parser_dict = None
smooth_factor = 10
leg_size = 30
subsample_step = 1
load_subsample_step = 50
default_colors = ["blue","orange","green","magenta", "brown", "red",'black',"grey",u'#ff7f0e',
"cyan", "pink",'purple', u'#1f77b4',
"darkorchid","sienna","lightpink", "indigo","mediumseagreen",'aqua',
'deeppink','silver','khaki','goldenrod','y','y','y','y','y','y','y','y','y','y','y','y' ] + ['y']*50
def get_all_runs(logdir, load_subsample_step=1):
"""
Recursively look through logdir for output files produced by
Assumes that any file "progress.txt" is a valid hit.
"""
global exp_idx
global units
datasets = []
for root, _, files in os.walk(logdir):
if 'log.csv' in files:
run_name = root[8:]
exp_name = None
# try to load a config file containing hyperparameters
config = None
try:
config_path = open(os.path.join(root,'config.json'))
config = json.load(config_path)
if 'exp_name' in config:
exp_name = config['exp_name']
except:
print('No file named config.json')
exp_idx += 1
# load progress data
try:
print(os.path.join(root,'log.csv'))
exp_data = pd.read_csv(os.path.join(root,'log.csv'))
except:
raise ValueError("CSV {} faulty".format(os.path.join(root, 'log.csv')))
exp_data = exp_data[::load_subsample_step]
data_dict = exp_data.to_dict("list")
data_dict['config'] = config
nb_epochs = len(data_dict['frames'])
print('{} -> {}'.format(run_name, nb_epochs))
datasets.append(data_dict)
return datasets
def get_datasets(rootdir, load_only="", load_subsample_step=1, ignore_pattern="ignore"):
_, models_list, _ = next(os.walk(rootdir))
print(models_list)
for dir_name in models_list.copy():
# add "ignore" in a directory name to avoid loading its content
if ignore_pattern in dir_name or load_only not in dir_name:
models_list.remove(dir_name)
for expe_name in list(labels.keys()):
if expe_name not in models_list:
del labels[expe_name]
# setting per-model type colors
for i,m_name in enumerate(models_list):
for m_type, m_color in per_model_colors.items():
if m_type in m_name:
colors[m_name] = m_color
print("extracting data for {}...".format(m_name))
m_id = m_name
models_saves[m_id] = OrderedDict()
models_saves[m_id]['data'] = get_all_runs(rootdir+m_name, load_subsample_step=load_subsample_step)
print("done")
if m_name not in labels:
labels[m_name] = m_name
"""
retrieve all experiences located in "data to vizu" folder
"""
labels = OrderedDict()
per_model_colors = OrderedDict()
# per_model_colors = OrderedDict([('ALP-GMM',u'#1f77b4'),
# ('hmn','pink'),
# ('ADR','black')])
# LOAD DATA
models_saves = OrderedDict()
colors = OrderedDict()
static_lines = {}
# get_datasets("storage/",load_only="RERUN_WizardGuide")
# get_datasets("storage/",load_only="RERUN_WizardTwoGuides")
try:
figure_id = eval(sys.argv[1])
except:
figure_id = sys.argv[1]
print("fig:", figure_id)
if figure_id == 0:
# train change
env_type = "No_NPC_environment"
fig_type = "train"
get_datasets("storage/", "RERUN_WizardGuide_lang64_mm", load_subsample_step=load_subsample_step)
get_datasets("storage/", "RERUN_WizardGuide_lang64_deaf_no_explo", load_subsample_step=load_subsample_step)
get_datasets("storage/", "RERUN_WizardGuide_lang64_no_explo", load_subsample_step=load_subsample_step)
get_datasets("storage/", "RERUN_WizardGuide_lang64_curr_dial", load_subsample_step=load_subsample_step)
top_n = 16
elif figure_id == 1:
# arch change
env_type = "No_NPC_environment"
fig_type = "arch"
get_datasets("storage/", "RERUN_WizardGuide_lang64_mm", load_subsample_step=load_subsample_step)
get_datasets("storage/", "RERUN_WizardGuide_lang64_bow", load_subsample_step=load_subsample_step)
get_datasets("storage/", "RERUN_WizardGuide_lang64_no_mem", load_subsample_step=load_subsample_step)
get_datasets("storage/", "RERUN_WizardGuide_lang64_bigru", load_subsample_step=load_subsample_step)
get_datasets("storage/", "RERUN_WizardGuide_lang64_attgru", load_subsample_step=load_subsample_step)
top_n = 16
elif figure_id == 2:
# train change FULL
env_type = "FULL_environment"
fig_type = "train"
get_datasets("storage/", "RERUN_WizardTwoGuides_lang64_mm", load_subsample_step=load_subsample_step)
get_datasets("storage/", "RERUN_WizardTwoGuides_lang64_deaf_no_explo", load_subsample_step=load_subsample_step)
get_datasets("storage/", "RERUN_WizardTwoGuides_lang64_no_explo", load_subsample_step=load_subsample_step)
get_datasets("storage/", "RERUN_WizardTwoGuides_lang64_curr_dial", load_subsample_step=load_subsample_step)
top_n = 16
elif figure_id == 3:
# arch change FULL
env_type = "FULL_environment"
fig_type = "arch"
get_datasets("storage/", "RERUN_WizardTwoGuides_lang64_mm", load_subsample_step=load_subsample_step)
get_datasets("storage/", "RERUN_WizardTwoGuides_lang64_bow", load_subsample_step=load_subsample_step)
get_datasets("storage/", "RERUN_WizardTwoGuides_lang64_no_mem", load_subsample_step=load_subsample_step)
get_datasets("storage/", "RERUN_WizardTwoGuides_lang64_bigru", load_subsample_step=load_subsample_step)
get_datasets("storage/", "RERUN_WizardTwoGuides_lang64_attgru", load_subsample_step=load_subsample_step)
top_n = 16
elif str(figure_id) == "ShowMe":
get_datasets("storage/", "20-05_NeurIPS_ShowMe_ABL_CEB", load_subsample_step=load_subsample_step, ignore_pattern="tanh_0.3")
get_datasets("storage/", "20-05_NeurIPS_ShowMe_NO_BONUS_ABL", load_subsample_step=load_subsample_step)
get_datasets("storage/", "20-05_NeurIPS_ShowMe_CEB", load_subsample_step=load_subsample_step, ignore_pattern="tanh_0.3")
get_datasets("storage/", "20-05_NeurIPS_ShowMe_NO_BONUS_env", load_subsample_step=load_subsample_step)
label_parser_dict = {
"20-05_NeurIPS_ShowMe_ABL_CEB" : "ShowMe_exp_bonus_no_social_skills_required",
"20-05_NeurIPS_ShowMe_NO_BONUS_ABL" : "ShowMe_no_bonus_no_social_skills_required",
"20-05_NeurIPS_ShowMe_CEB" : "ShowMe_exp_bonus",
"20-05_NeurIPS_ShowMe_NO_BONUS_env" : "ShowMe_no_bonus",
}
env_type = str(figure_id)
fig_type = "test"
top_n = 16
elif str(figure_id) == "Help":
# env_type = "Bobo"
# get_datasets("storage/", "Bobo")
get_datasets("storage/", "24-05_NeurIPS_Help", load_subsample_step=load_subsample_step, ignore_pattern="ABL")
# get_datasets("storage/", "26-05_NeurIPS_gpu_Help_NoSocial_NO_BONUS_ABL", load_subsample_step=load_subsample_step)
get_datasets("storage/", "26-05_NeurIPS_gpu_Help_NoSocial_NO_BONUS_env", load_subsample_step=load_subsample_step)
label_parser_dict = {
"Help_NO_BONUS_env": "PPO",
"Help_BONUS_env": "PPO+Explo",
# "Help_NO_BONUS_ABL_env": "ExiterRole_no_bonus_no_NPC",
# "Help_BONUS_ABL_env": "ExiterRole_bonus_no_NPC",
"26-05_NeurIPS_gpu_Help_NoSocial_NO_BONUS_env": "Unsocial PPO",
# "26-05_NeurIPS_gpu_Help_NoSocial_NO_BONUS_ABL": "ExiterRole_Insocial_ABL"
}
static_lines = {
"PPO (helper)": (0.12, 0.05, "#1f77b4"),
"PPO+Explo (helper)": (0.11, 0.04, "indianred"),
# "Help_exp_bonus": (0.11525, 0.04916 , default_colors[2]),
# "HelperRole_ABL_no_exp_bonus": (0.022375, 0.01848, default_colors[3]),
"Unsocial PPO (helper)": (0.15, 0.06, "grey"),
# "HelperRole_ABL_Insocial": (0.01775, 0.010544, default_colors[4]),
}
env_type = str(figure_id)
fig_type = "test"
top_n = 16
elif str(figure_id) == "TalkItOut":
print("You mean Polite")
exit()
elif str(figure_id) == "TalkItOutPolite":
# env_type = "TalkItOut"
# get_datasets("storage/", "ORIENT_env_MiniGrid-TalkItOut")
# env_type = "GuideThief"
# get_datasets("storage/", "GuideThief")
# env_type = "Bobo"
# get_datasets("storage/", "Bobo")
get_datasets("storage/", "20-05_NeurIPS_TalkItOutPolite", load_subsample_step=load_subsample_step)
# get_datasets("storage/", "21-05_NeurIPS_small_bonus_TalkItOutPolite")
get_datasets("storage/", "26-05_NeurIPS_gpu_TalkItOutPolite_NoSocial_NO_BONUS_env", load_subsample_step=load_subsample_step)
get_datasets("storage/", "26-05_NeurIPS_gpu_TalkItOutPolite_NoSocial_NO_BONUS_NoLiar", load_subsample_step=load_subsample_step)
label_parser_dict = {
"TalkItOutPolite_NO_BONUS_env": "PPO",
"TalkItOutPolite_e": "PPO+Explo",
"TalkItOutPolite_NO_BONUS_NoLiar": "PPO (no liar)",
"TalkItOutPolite_NoLiar_e": "PPO+Explo (no liar)",
"26-05_NeurIPS_gpu_TalkItOutPolite_NoSocial_NO_BONUS_env": "Unsocial PPO",
"26-05_NeurIPS_gpu_TalkItOutPolite_NoSocial_NO_BONUS_NoLiar": "Unsocial PPO (no liar)",
}
env_type = str(figure_id)
fig_type = "test"
top_n = 16
elif str(figure_id) == "DiverseExit":
get_datasets("storage/", "24-05_NeurIPS_DiverseExit", load_subsample_step=load_subsample_step)
get_datasets("storage/", "26-05_NeurIPS_gpu_DiverseExit", load_subsample_step=load_subsample_step)
label_parser_dict = {
"DiverseExit_NO_BONUS": "No_bonus",
"DiverseExit_BONUS": "BOnus",
"gpu_DiverseExit_NoSocial": "No_social",
}
env_type = str(figure_id)
fig_type = "test"
top_n = 16
else:
get_datasets("storage/", str(figure_id), load_subsample_step=load_subsample_step)
env_type = str(figure_id)
fig_type = "test"
top_n = 8
#### get_datasets("storage/", "RERUN_WizardGuide_lang64_nameless")
#### get_datasets("storage/", "RERUN_WizardTwoGuides_lang64_nameless")
if per_model_colors: # order runs for legend order as in per_models_colors, with corresponding colors
ordered_labels = OrderedDict()
for teacher_type in per_model_colors.keys():
for k,v in labels.items():
if teacher_type in k:
ordered_labels[k] = v
labels = ordered_labels
else:
print('not using per_model_color')
for k in models_saves.keys():
labels[k] = k
def plot_with_shade(subplot_nb, ax,x,y,err,color,shade_color,label,
y_min=None,y_max=None, legend=False, leg_size=30, leg_loc='best', title=None,
ylim=[0,100], xlim=[0,40], leg_args={}, leg_linewidth=13.0, linewidth=10.0, ticksize=20,
zorder=None, xlabel='perf',ylabel='env steps'):
#plt.rcParams.update({'font.size': 15})
ax.locator_params(axis='x', nbins=4)
ax.locator_params(axis='y', nbins=3)
ax.tick_params(axis='both', which='major', labelsize=ticksize)
ax.plot(x,y, color=color, label=label,linewidth=linewidth,zorder=zorder)
ax.fill_between(x,y-err,y+err,color=shade_color,alpha=0.2)
if legend:
leg = ax.legend(loc=leg_loc, **leg_args) #34
for legobj in leg.legendHandles:
legobj.set_linewidth(leg_linewidth)
ax.set_xlabel(xlabel, fontsize=30)
if subplot_nb == 0:
ax.set_ylabel(ylabel, fontsize=30,labelpad=-4)
ax.set_xlim(xmin=xlim[0],xmax=xlim[1])
ax.set_ylim(bottom=ylim[0],top=ylim[1])
if title:
ax.set_title(title, fontsize=22)
# Plot utils
def plot_with_shade_grg(subplot_nb, ax,x,y,err,color,shade_color,label,
y_min=None,y_max=None, legend=False, leg_size=30, leg_loc='best', title=None,
ylim=[0,100], xlim=[0,40], leg_args={}, leg_linewidth=13.0, linewidth=10.0, ticksize=20,
zorder=None, xlabel='perf',ylabel='env steps', linestyle="-"):
#plt.rcParams.update({'font.size': 15})
ax.locator_params(axis='x', nbins=4)
ax.locator_params(axis='y', nbins=3)
ax.tick_params(axis='both', which='major', labelsize=ticksize)
ax.plot(x, y, color=color, label=label,linewidth=linewidth,zorder=zorder, linestyle=linestyle)
ax.fill_between(x, y-err, y+err,color=shade_color,alpha=0.2)
if legend:
leg = ax.legend(loc=leg_loc, **leg_args) #34
for legobj in leg.legendHandles:
legobj.set_linewidth(leg_linewidth)
ax.set_xlabel(xlabel, fontsize=30)
if subplot_nb == 0:
ax.set_ylabel(ylabel, fontsize=30, labelpad=-4)
ax.set_xlim(xmin=xlim[0],xmax=xlim[1])
ax.set_ylim(bottom=ylim[0],top=ylim[1])
if title:
ax.set_title(title, fontsize=22)
# Metric plot
metric = 'bin_extrinsic_return_mean'
# metric = 'mission_string_observed_mean'
# metric = 'extrinsic_return_mean'
# metric = 'extrinsic_return_max'
# metric = "rreturn_mean"
# metric = 'rreturn_max'
# metric = 'FPS'
f, ax = plt.subplots(1, 1, figsize=(10.0, 6.0))
ax = [ax]
max_y = -np.inf
min_y = np.inf
# hardcoded
min_y, max_y = 0.0, 1.0
max_steps = 0
exclude_patterns = []
include_patterns = []
def label_parser(label, figure_id, label_parser_dict=None):
if label_parser_dict:
if sum([1 for k, v in label_parser_dict.items() if k in label]) != 1:
if label in label_parser_dict:
# see if there is an exact match
return label_parser_dict[label]
else:
print("ERROR multiple curves match a lable and there is no exact match")
print(label)
exit()
for k, v in label_parser_dict.items():
if k in label: return v
else:
# return label.split("_env_")[1]
if figure_id not in [1,2,3,4]:
return label
else:
label_parser_dict = {
"RERUN_WizardGuide_lang64_no_explo": "MH-BabyAI",
"RERUN_WizardTwoGuides_lang64_no_explo": "MH-BabyAI",
"RERUN_WizardGuide_lang64_mm_baby_short_rec_env": "MH-BabyAI-ExpBonus",
"RERUN_WizardTwoGuides_lang64_mm_baby_short_rec_env": "MH-BabyAI-ExpBonus",
"RERUN_WizardGuide_lang64_deaf_no_explo": "Deaf-MH-BabyAI",
"RERUN_WizardTwoGuides_lang64_deaf_no_explo": "Deaf-MH-BabyAI",
"RERUN_WizardGuide_lang64_bow": "MH-BabyAI-ExpBonus-BOW",
"RERUN_WizardTwoGuides_lang64_bow": "MH-BabyAI-ExpBonus-BOW",
"RERUN_WizardGuide_lang64_no_mem": "MH-BabyAI-ExpBonus-no-mem",
"RERUN_WizardTwoGuides_lang64_no_mem": "MH-BabyAI-ExpBonus-no-mem",
"RERUN_WizardGuide_lang64_bigru": "MH-BabyAI-ExpBonus-bigru",
"RERUN_WizardTwoGuides_lang64_bigru": "MH-BabyAI-ExpBonus-bigru",
"RERUN_WizardGuide_lang64_attgru": "MH-BabyAI-ExpBonus-attgru",
"RERUN_WizardTwoGuides_lang64_attgru": "MH-BabyAI-ExpBonus-attgru",
"RERUN_WizardGuide_lang64_curr_dial": "MH-BabyAI-ExpBonus-current-dialogue",
"RERUN_WizardTwoGuides_lang64_curr_dial": "MH-BabyAI-ExpBonus-current-dialogue",
"RERUN_WizardTwoGuides_lang64_mm_baby_short_rec_100M": "MH-BabyAI-ExpBonus-100M"
}
if sum([1 for k, v in label_parser_dict.items() if k in label]) != 1:
print("ERROR multiple curves match a lable")
print(label)
exit()
for k, v in label_parser_dict.items():
if k in label: return v
return label
per_seed=False
for i, m_id in enumerate(models_saves.keys()):
#excluding some experiments
if any([ex_pat in m_id for ex_pat in exclude_patterns]):
continue
if len(include_patterns) > 0:
if not any([in_pat in m_id for in_pat in include_patterns]):
continue
runs_data = models_saves[m_id]['data']
ys = []
# DIRTY FIX FOR FAULTY LOGGING
print("m_id:", m_id)
if runs_data[0]['frames'][1] == 'frames':
runs_data[0]['frames'] = list(filter(('frames').__ne__, runs_data[0]['frames']))
###########################################
# determine minimal run length across seeds
minimum = sorted([len(run['frames']) for run in runs_data if len(run['frames'])])[-top_n]
min_len = np.min([len(run['frames']) for run in runs_data if len(run['frames']) >= minimum])
# min_len = np.min([len(run['frames']) for run in runs_data if len(run['frames']) > 10])
print("min_len:", min_len)
#compute env steps (x axis)
longest_id = np.argmax([len(rd['frames']) for rd in runs_data])
steps = np.array(runs_data[longest_id]['frames'], dtype=np.int) / 1000000
steps = steps[:min_len]
for run in runs_data:
data = run[metric]
# DIRTY FIX FOR FAULTY LOGGING (headers in data)
if data[1] == metric:
data = np.array(list(filter((metric).__ne__, data)), dtype=np.float16)
###########################################
if len(data) >= min_len:
if len(data) > min_len:
print("run has too many {} datapoints ({}). Discarding {}".format(m_id, len(data),
len(data)-min_len))
data = data[0:min_len]
ys.append(data)
ys_same_len = ys # RUNS MUST HAVE SAME LEN
# computes stats
n_seeds = len(ys_same_len)
sems = np.std(ys_same_len,axis=0)/np.sqrt(len(ys_same_len)) # sem
stds = np.std(ys_same_len,axis=0) # std
means = np.mean(ys_same_len,axis=0)
color = default_colors[i]
# per-metric adjusments
ylabel=metric
if metric == 'bin_extrinsic_return_mean':
ylabel = "success rate"
if metric == 'duration':
ylabel = "time (hours)"
means = means / 3600
sems = sems / 3600
stds = stds / 3600
#plot x y bounds
curr_max_y = np.max(means)
curr_min_y = np.min(means)
curr_max_steps = np.max(steps)
if curr_max_y > max_y:
max_y = curr_max_y
if curr_min_y < min_y:
min_y = curr_min_y
if curr_max_steps > max_steps:
max_steps = curr_max_steps
if subsample_step:
steps = steps[0::subsample_step]
means = means[0::subsample_step]
stds = stds[0::subsample_step]
sems = sems[0::subsample_step]
ys_same_len = [y[0::subsample_step] for y in ys_same_len]
# display seeds separtely
if per_seed:
for s_i, seed_ys in enumerate(ys_same_len):
seed_c = default_colors[i+s_i]
label = m_id#+"(s:{})".format(s_i)
plot_with_shade(0, ax[0], steps, seed_ys, stds*0, seed_c, seed_c, label,
legend=False, xlim=[0, max_steps], ylim=[min_y, max_y],
leg_size=leg_size, xlabel="env steps (millions)", ylabel=ylabel, smooth_factor=smooth_factor,
)
else:
label = label_parser(m_id, figure_id, label_parser_dict=label_parser_dict)
label = label #+"({})".format(n_seeds)
def smooth(x_, n=50):
if type(x_) == list:
x_ = np.array(x_)
return np.array([x_[max(i - n, 0):i + 1].mean() for i in range(len(x_))])
if smooth_factor:
means = smooth(means,smooth_factor)
stds = smooth(stds,smooth_factor)
x_lim = 30
if figure_id == "TalkItOutPolite":
leg_args = {
'ncol': 1,
'columnspacing': 1.0,
'handlelength': 1.0,
'frameon': False,
# 'bbox_to_anchor': (0.00, 0.23, 0.10, .102),
'bbox_to_anchor': (0.55, 0.35, 0.10, .102),
'labelspacing': 0.2,
'fontsize': 27
}
elif figure_id == "Help":
leg_args = {
'ncol': 1,
'columnspacing': 1.0,
'handlelength': 1.0,
'frameon': False,
# 'bbox_to_anchor': (0.00, 0.23, 0.10, .102),
'bbox_to_anchor': (0.39, 0.20, 0.10, .102),
'labelspacing': 0.2,
'fontsize': 27
}
else:
leg_args = {}
color_code = dict([
('PPO+Explo', 'indianred'),
('PPO', "#1f77b4"),
('Unsocial PPO', "grey"),
('PPO (no liar)', "#043252"),
('PPO+Explo (no liar)', "darkred"),
('Unsocial PPO (no liar)', "black"),
('PPO+Explo (helper)', 'indianred'),
('PPO (helper)', "#1f77b4"),
('Unsocial PPO (helper)', "grey")]
)
color = color_code.get(label, np.random.choice(default_colors))
print("C:",color)
plot_with_shade_grg(
0, ax[0], steps, means, stds, color, color, label,
legend=True,
xlim=[0, steps[-1] if not x_lim else x_lim],
ylim=[0, 1.0], xlabel="env steps (millions)", ylabel=ylabel, title=None,
leg_args =leg_args)
#
# plot_with_shade(0, ax[0], steps, means, stds, color, color,label,
# legend=True, xlim=[0, max_steps], ylim=[min_y, max_y],
# leg_size=leg_size, xlabel="Env steps (millions)", ylabel=ylabel, linewidth=5.0, smooth_factor=smooth_factor)
for label, (mean, std, color) in static_lines.items():
plot_with_shade_grg(
0, ax[0], steps, np.array([mean]*len(steps)), np.array([std]*len(steps)), color, color, label,
legend=True,
xlim=[0, max_steps],
ylim=[0, 1.0],
xlabel="env steps (millions)", ylabel=ylabel, linestyle=":",
leg_args=leg_args)
plt.tight_layout()
f.savefig('graphics/{}_results.svg'.format(str(figure_id)))
f.savefig('graphics/{}_results.png'.format(str(figure_id)))
plt.show() |