File size: 22,418 Bytes
be5548b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
#!/usr/bin/env python
import seaborn
import numpy as np
import os
from collections import OrderedDict
import pandas as pd
import matplotlib.pyplot as plt
import sys
from termcolor import cprint

# Load data

# Global vars for tracking and labeling data at load time.
exp_idx = 0
label_parser_dict = None

smooth_factor = 10
leg_size = 30

subsample_step = 1
load_subsample_step = 50

default_colors = ["blue","orange","green","magenta", "brown", "red",'black',"grey",u'#ff7f0e',
                  "cyan", "pink",'purple', u'#1f77b4',
                  "darkorchid","sienna","lightpink", "indigo","mediumseagreen",'aqua',
                  'deeppink','silver','khaki','goldenrod','y','y','y','y','y','y','y','y','y','y','y','y' ]  + ['y']*50

def get_all_runs(logdir, load_subsample_step=1):
    """
    Recursively look through logdir for output files produced by
    Assumes that any file "progress.txt" is a valid hit. 
    """
    global exp_idx
    global units
    datasets = []
    for root, _, files in os.walk(logdir):
        if 'log.csv' in files:
            run_name = root[8:]
            exp_name = None
            
            # try to load a config file containing hyperparameters
            config = None
            try:
                config_path = open(os.path.join(root,'config.json'))
                config = json.load(config_path)
                if 'exp_name' in config:
                    exp_name = config['exp_name']       
            except:
                print('No file named config.json')
                
            exp_idx += 1

            # load progress data
            try:
                print(os.path.join(root,'log.csv'))
                exp_data = pd.read_csv(os.path.join(root,'log.csv'))
            except:
                raise ValueError("CSV {} faulty".format(os.path.join(root, 'log.csv')))
            
            exp_data = exp_data[::load_subsample_step]
            data_dict = exp_data.to_dict("list")

            data_dict['config'] = config
            nb_epochs = len(data_dict['frames'])
            print('{} -> {}'.format(run_name, nb_epochs))


            datasets.append(data_dict)

    return datasets

def get_datasets(rootdir, load_only="", load_subsample_step=1, ignore_pattern="ignore"):
    _, models_list, _ = next(os.walk(rootdir))
    print(models_list)
    for dir_name in models_list.copy():
        # add "ignore" in a directory name to avoid loading its content
        if ignore_pattern in dir_name or load_only not in dir_name:
            models_list.remove(dir_name)
    for expe_name in list(labels.keys()):
        if expe_name not in models_list:
            del labels[expe_name]
            
    # setting per-model type colors    
    for i,m_name in enumerate(models_list):
        for m_type, m_color in per_model_colors.items():
            if m_type in m_name:
                colors[m_name] = m_color
        print("extracting data for {}...".format(m_name))
        m_id = m_name
        models_saves[m_id] = OrderedDict()
        models_saves[m_id]['data'] = get_all_runs(rootdir+m_name, load_subsample_step=load_subsample_step)
        print("done")
        if m_name not in labels:
            labels[m_name] = m_name

    """
    retrieve all experiences located in "data to vizu" folder
    """
labels = OrderedDict()
per_model_colors = OrderedDict()
# per_model_colors = OrderedDict([('ALP-GMM',u'#1f77b4'),
#                                 ('hmn','pink'),
#                                 ('ADR','black')])

# LOAD DATA
models_saves = OrderedDict()
colors = OrderedDict()

static_lines = {}
# get_datasets("storage/",load_only="RERUN_WizardGuide")
# get_datasets("storage/",load_only="RERUN_WizardTwoGuides")
try:
    figure_id = eval(sys.argv[1])
except:
    figure_id = sys.argv[1]

print("fig:", figure_id)
if figure_id == 0:
    # train change
    env_type = "No_NPC_environment"
    fig_type = "train"

    get_datasets("storage/", "RERUN_WizardGuide_lang64_mm", load_subsample_step=load_subsample_step)
    get_datasets("storage/", "RERUN_WizardGuide_lang64_deaf_no_explo", load_subsample_step=load_subsample_step)
    get_datasets("storage/", "RERUN_WizardGuide_lang64_no_explo", load_subsample_step=load_subsample_step)
    get_datasets("storage/", "RERUN_WizardGuide_lang64_curr_dial", load_subsample_step=load_subsample_step)
    top_n = 16
elif figure_id == 1:
    # arch change
    env_type = "No_NPC_environment"
    fig_type = "arch"

    get_datasets("storage/", "RERUN_WizardGuide_lang64_mm", load_subsample_step=load_subsample_step)
    get_datasets("storage/", "RERUN_WizardGuide_lang64_bow", load_subsample_step=load_subsample_step)
    get_datasets("storage/", "RERUN_WizardGuide_lang64_no_mem", load_subsample_step=load_subsample_step)
    get_datasets("storage/", "RERUN_WizardGuide_lang64_bigru", load_subsample_step=load_subsample_step)
    get_datasets("storage/", "RERUN_WizardGuide_lang64_attgru", load_subsample_step=load_subsample_step)
    top_n = 16
elif figure_id == 2:
    # train change FULL
    env_type = "FULL_environment"
    fig_type = "train"

    get_datasets("storage/", "RERUN_WizardTwoGuides_lang64_mm", load_subsample_step=load_subsample_step)
    get_datasets("storage/", "RERUN_WizardTwoGuides_lang64_deaf_no_explo", load_subsample_step=load_subsample_step)
    get_datasets("storage/", "RERUN_WizardTwoGuides_lang64_no_explo", load_subsample_step=load_subsample_step)
    get_datasets("storage/", "RERUN_WizardTwoGuides_lang64_curr_dial", load_subsample_step=load_subsample_step)
    top_n = 16
elif figure_id == 3:
    # arch change FULL
    env_type = "FULL_environment"
    fig_type = "arch"

    get_datasets("storage/", "RERUN_WizardTwoGuides_lang64_mm", load_subsample_step=load_subsample_step)
    get_datasets("storage/", "RERUN_WizardTwoGuides_lang64_bow", load_subsample_step=load_subsample_step)
    get_datasets("storage/", "RERUN_WizardTwoGuides_lang64_no_mem", load_subsample_step=load_subsample_step)
    get_datasets("storage/", "RERUN_WizardTwoGuides_lang64_bigru", load_subsample_step=load_subsample_step)
    get_datasets("storage/", "RERUN_WizardTwoGuides_lang64_attgru", load_subsample_step=load_subsample_step)
    top_n = 16
elif str(figure_id) == "ShowMe":

    get_datasets("storage/", "20-05_NeurIPS_ShowMe_ABL_CEB", load_subsample_step=load_subsample_step, ignore_pattern="tanh_0.3")
    get_datasets("storage/", "20-05_NeurIPS_ShowMe_NO_BONUS_ABL", load_subsample_step=load_subsample_step)
    get_datasets("storage/", "20-05_NeurIPS_ShowMe_CEB", load_subsample_step=load_subsample_step, ignore_pattern="tanh_0.3")
    get_datasets("storage/", "20-05_NeurIPS_ShowMe_NO_BONUS_env", load_subsample_step=load_subsample_step)

    label_parser_dict = {
        "20-05_NeurIPS_ShowMe_ABL_CEB" : "ShowMe_exp_bonus_no_social_skills_required",
        "20-05_NeurIPS_ShowMe_NO_BONUS_ABL" : "ShowMe_no_bonus_no_social_skills_required",
        "20-05_NeurIPS_ShowMe_CEB" : "ShowMe_exp_bonus",
        "20-05_NeurIPS_ShowMe_NO_BONUS_env" : "ShowMe_no_bonus",
    }

    env_type = str(figure_id)

    fig_type = "test"
    top_n = 16

elif str(figure_id) == "Help":

    # env_type = "Bobo"
    # get_datasets("storage/", "Bobo")
    get_datasets("storage/", "24-05_NeurIPS_Help", load_subsample_step=load_subsample_step, ignore_pattern="ABL")
    # get_datasets("storage/", "26-05_NeurIPS_gpu_Help_NoSocial_NO_BONUS_ABL", load_subsample_step=load_subsample_step)
    get_datasets("storage/", "26-05_NeurIPS_gpu_Help_NoSocial_NO_BONUS_env", load_subsample_step=load_subsample_step)

    label_parser_dict = {
        "Help_NO_BONUS_env": "PPO",
        "Help_BONUS_env": "PPO+Explo",
        # "Help_NO_BONUS_ABL_env": "ExiterRole_no_bonus_no_NPC",
        # "Help_BONUS_ABL_env": "ExiterRole_bonus_no_NPC",
        "26-05_NeurIPS_gpu_Help_NoSocial_NO_BONUS_env": "Unsocial PPO",
        # "26-05_NeurIPS_gpu_Help_NoSocial_NO_BONUS_ABL": "ExiterRole_Insocial_ABL"
    }

    static_lines = {
        "PPO (helper)": (0.12, 0.05, "#1f77b4"),
        "PPO+Explo (helper)": (0.11, 0.04, "indianred"),
        # "Help_exp_bonus": (0.11525, 0.04916 , default_colors[2]),
        # "HelperRole_ABL_no_exp_bonus": (0.022375, 0.01848, default_colors[3]),
        "Unsocial PPO (helper)": (0.15, 0.06, "grey"),
        # "HelperRole_ABL_Insocial": (0.01775, 0.010544, default_colors[4]),
    }

    env_type = str(figure_id)

    fig_type = "test"
    top_n = 16

elif str(figure_id) == "TalkItOut":
    print("You mean Polite")
    exit()

elif str(figure_id) == "TalkItOutPolite":
    # env_type = "TalkItOut"
    # get_datasets("storage/", "ORIENT_env_MiniGrid-TalkItOut")

    # env_type = "GuideThief"
    # get_datasets("storage/", "GuideThief")

    # env_type = "Bobo"
    # get_datasets("storage/", "Bobo")
    get_datasets("storage/", "20-05_NeurIPS_TalkItOutPolite", load_subsample_step=load_subsample_step)
    # get_datasets("storage/", "21-05_NeurIPS_small_bonus_TalkItOutPolite")
    get_datasets("storage/", "26-05_NeurIPS_gpu_TalkItOutPolite_NoSocial_NO_BONUS_env", load_subsample_step=load_subsample_step)
    get_datasets("storage/", "26-05_NeurIPS_gpu_TalkItOutPolite_NoSocial_NO_BONUS_NoLiar", load_subsample_step=load_subsample_step)

    label_parser_dict = {
        "TalkItOutPolite_NO_BONUS_env": "PPO",
        "TalkItOutPolite_e": "PPO+Explo",
        "TalkItOutPolite_NO_BONUS_NoLiar": "PPO (no liar)",
        "TalkItOutPolite_NoLiar_e": "PPO+Explo (no liar)",
        "26-05_NeurIPS_gpu_TalkItOutPolite_NoSocial_NO_BONUS_env": "Unsocial PPO",
        "26-05_NeurIPS_gpu_TalkItOutPolite_NoSocial_NO_BONUS_NoLiar": "Unsocial PPO (no liar)",
    }


    env_type = str(figure_id)

    fig_type = "test"
    top_n = 16

elif str(figure_id) == "DiverseExit":
    get_datasets("storage/", "24-05_NeurIPS_DiverseExit", load_subsample_step=load_subsample_step)
    get_datasets("storage/", "26-05_NeurIPS_gpu_DiverseExit", load_subsample_step=load_subsample_step)

    label_parser_dict = {
        "DiverseExit_NO_BONUS": "No_bonus",
        "DiverseExit_BONUS": "BOnus",
        "gpu_DiverseExit_NoSocial": "No_social",
    }

    env_type = str(figure_id)

    fig_type = "test"
    top_n = 16

else:
    get_datasets("storage/", str(figure_id), load_subsample_step=load_subsample_step)

    env_type = str(figure_id)

    fig_type = "test"
    top_n = 8

#### get_datasets("storage/", "RERUN_WizardGuide_lang64_nameless")
#### get_datasets("storage/", "RERUN_WizardTwoGuides_lang64_nameless")


if per_model_colors:  # order runs for legend order as in per_models_colors, with corresponding colors
    ordered_labels = OrderedDict()
    for teacher_type in per_model_colors.keys():
        for k,v in labels.items():
            if teacher_type in k:
                ordered_labels[k] = v
    labels = ordered_labels
else:
    print('not using per_model_color')
    for k in models_saves.keys():
        labels[k] = k

def plot_with_shade(subplot_nb, ax,x,y,err,color,shade_color,label,
                  y_min=None,y_max=None, legend=False, leg_size=30, leg_loc='best', title=None,
                  ylim=[0,100], xlim=[0,40], leg_args={}, leg_linewidth=13.0, linewidth=10.0, ticksize=20,
                   zorder=None, xlabel='perf',ylabel='env steps'):
    #plt.rcParams.update({'font.size': 15})
    ax.locator_params(axis='x', nbins=4)
    ax.locator_params(axis='y', nbins=3)
    ax.tick_params(axis='both', which='major', labelsize=ticksize)
    ax.plot(x,y, color=color, label=label,linewidth=linewidth,zorder=zorder)
    ax.fill_between(x,y-err,y+err,color=shade_color,alpha=0.2)
    if legend:
        leg = ax.legend(loc=leg_loc, **leg_args) #34
        for legobj in leg.legendHandles:
            legobj.set_linewidth(leg_linewidth)
    ax.set_xlabel(xlabel, fontsize=30)
    if subplot_nb == 0:
        ax.set_ylabel(ylabel, fontsize=30,labelpad=-4)
    ax.set_xlim(xmin=xlim[0],xmax=xlim[1])
    ax.set_ylim(bottom=ylim[0],top=ylim[1])
    if title:
        ax.set_title(title, fontsize=22)
# Plot utils
def plot_with_shade_grg(subplot_nb, ax,x,y,err,color,shade_color,label,
                  y_min=None,y_max=None, legend=False, leg_size=30, leg_loc='best', title=None,
                  ylim=[0,100], xlim=[0,40], leg_args={}, leg_linewidth=13.0, linewidth=10.0, ticksize=20,
                   zorder=None, xlabel='perf',ylabel='env steps', linestyle="-"):
    #plt.rcParams.update({'font.size': 15})
    ax.locator_params(axis='x', nbins=4)
    ax.locator_params(axis='y', nbins=3)
    ax.tick_params(axis='both', which='major', labelsize=ticksize)


    ax.plot(x, y, color=color, label=label,linewidth=linewidth,zorder=zorder, linestyle=linestyle)
    ax.fill_between(x, y-err, y+err,color=shade_color,alpha=0.2)
    if legend:
        leg = ax.legend(loc=leg_loc, **leg_args) #34
        for legobj in leg.legendHandles:
            legobj.set_linewidth(leg_linewidth)
    ax.set_xlabel(xlabel, fontsize=30)
    if subplot_nb == 0:
        ax.set_ylabel(ylabel, fontsize=30, labelpad=-4)
    ax.set_xlim(xmin=xlim[0],xmax=xlim[1])
    ax.set_ylim(bottom=ylim[0],top=ylim[1])
    if title:
        ax.set_title(title, fontsize=22)
        

# Metric plot
metric = 'bin_extrinsic_return_mean'
# metric = 'mission_string_observed_mean'
# metric = 'extrinsic_return_mean'
# metric = 'extrinsic_return_max'
# metric = "rreturn_mean"
# metric = 'rreturn_max'
# metric = 'FPS'

f, ax = plt.subplots(1, 1, figsize=(10.0, 6.0))
ax = [ax]
max_y = -np.inf
min_y = np.inf
# hardcoded
min_y, max_y = 0.0, 1.0
max_steps = 0
exclude_patterns = []
include_patterns = []


def label_parser(label, figure_id, label_parser_dict=None):
    if label_parser_dict:
        if sum([1 for k, v in label_parser_dict.items() if k in label]) != 1:
            if label in label_parser_dict:
                # see if there is an exact match
                return label_parser_dict[label]
            else:
                print("ERROR multiple curves match a lable and there is no exact match")
                print(label)
                exit()

        for k, v in label_parser_dict.items():
            if k in label: return v

    else:
        # return label.split("_env_")[1]
        if figure_id not in [1,2,3,4]:
            return label
        else:
            label_parser_dict = {
                "RERUN_WizardGuide_lang64_no_explo": "MH-BabyAI",
                "RERUN_WizardTwoGuides_lang64_no_explo": "MH-BabyAI",

                "RERUN_WizardGuide_lang64_mm_baby_short_rec_env": "MH-BabyAI-ExpBonus",
                "RERUN_WizardTwoGuides_lang64_mm_baby_short_rec_env": "MH-BabyAI-ExpBonus",

                "RERUN_WizardGuide_lang64_deaf_no_explo": "Deaf-MH-BabyAI",
                "RERUN_WizardTwoGuides_lang64_deaf_no_explo": "Deaf-MH-BabyAI",

                "RERUN_WizardGuide_lang64_bow": "MH-BabyAI-ExpBonus-BOW",
                "RERUN_WizardTwoGuides_lang64_bow": "MH-BabyAI-ExpBonus-BOW",

                "RERUN_WizardGuide_lang64_no_mem": "MH-BabyAI-ExpBonus-no-mem",
                "RERUN_WizardTwoGuides_lang64_no_mem": "MH-BabyAI-ExpBonus-no-mem",

                "RERUN_WizardGuide_lang64_bigru": "MH-BabyAI-ExpBonus-bigru",
                "RERUN_WizardTwoGuides_lang64_bigru": "MH-BabyAI-ExpBonus-bigru",

                "RERUN_WizardGuide_lang64_attgru": "MH-BabyAI-ExpBonus-attgru",
                "RERUN_WizardTwoGuides_lang64_attgru": "MH-BabyAI-ExpBonus-attgru",

                "RERUN_WizardGuide_lang64_curr_dial": "MH-BabyAI-ExpBonus-current-dialogue",
                "RERUN_WizardTwoGuides_lang64_curr_dial": "MH-BabyAI-ExpBonus-current-dialogue",

                "RERUN_WizardTwoGuides_lang64_mm_baby_short_rec_100M": "MH-BabyAI-ExpBonus-100M"
            }
            if sum([1 for k, v in label_parser_dict.items() if k in label]) != 1:
                print("ERROR multiple curves match a lable")
                print(label)
                exit()

            for k, v in label_parser_dict.items():
                if k in label: return v

    return label

per_seed=False

for i, m_id in enumerate(models_saves.keys()):
    #excluding some experiments
    if any([ex_pat in m_id for ex_pat in exclude_patterns]):
        continue
    if len(include_patterns) > 0:
        if not any([in_pat in m_id for in_pat in include_patterns]):
            continue
    runs_data = models_saves[m_id]['data']
    ys = []

    # DIRTY FIX FOR FAULTY LOGGING
    print("m_id:", m_id)
    if runs_data[0]['frames'][1] == 'frames':
        runs_data[0]['frames'] = list(filter(('frames').__ne__, runs_data[0]['frames']))
    ###########################################    


    # determine minimal run length across seeds
    minimum = sorted([len(run['frames']) for run in runs_data if len(run['frames'])])[-top_n]
    min_len = np.min([len(run['frames']) for run in runs_data if len(run['frames']) >= minimum])

#     min_len = np.min([len(run['frames']) for run in runs_data if len(run['frames']) > 10])


    print("min_len:", min_len)

    #compute env steps (x axis)
    longest_id = np.argmax([len(rd['frames']) for rd in runs_data])
    steps = np.array(runs_data[longest_id]['frames'], dtype=np.int) / 1000000
    steps = steps[:min_len]
    for run in runs_data:  
        data = run[metric]
        # DIRTY FIX FOR FAULTY LOGGING (headers in data)
        if data[1] == metric:
            data = np.array(list(filter((metric).__ne__, data)), dtype=np.float16)
        ###########################################
        if len(data) >= min_len:
            if len(data) > min_len:
                print("run has too many {} datapoints ({}). Discarding {}".format(m_id, len(data),
                                                                                  len(data)-min_len))
                data = data[0:min_len]
            ys.append(data)
    ys_same_len = ys  # RUNS MUST HAVE SAME LEN

    # computes stats
    n_seeds = len(ys_same_len)
    sems = np.std(ys_same_len,axis=0)/np.sqrt(len(ys_same_len)) # sem
    stds = np.std(ys_same_len,axis=0) # std
    means = np.mean(ys_same_len,axis=0)
    color = default_colors[i]

    # per-metric adjusments
    ylabel=metric
    if metric == 'bin_extrinsic_return_mean':
        ylabel = "success rate"
    if metric == 'duration':
        ylabel = "time (hours)"
        means = means / 3600
        sems = sems / 3600
        stds = stds / 3600

    #plot x y bounds
    curr_max_y = np.max(means)
    curr_min_y = np.min(means)
    curr_max_steps = np.max(steps)
    if curr_max_y > max_y:
        max_y = curr_max_y
    if curr_min_y < min_y:
        min_y = curr_min_y
    if curr_max_steps > max_steps:
        max_steps = curr_max_steps

    if subsample_step:
        steps = steps[0::subsample_step]
        means = means[0::subsample_step]
        stds = stds[0::subsample_step]
        sems = sems[0::subsample_step]
        ys_same_len = [y[0::subsample_step] for y in ys_same_len]

    # display seeds separtely
    if per_seed:
        for s_i, seed_ys in enumerate(ys_same_len):
            seed_c = default_colors[i+s_i]
            label = m_id#+"(s:{})".format(s_i)
            plot_with_shade(0, ax[0], steps, seed_ys, stds*0, seed_c, seed_c, label,
                legend=False, xlim=[0, max_steps], ylim=[min_y, max_y],
                        leg_size=leg_size, xlabel="env steps (millions)", ylabel=ylabel, smooth_factor=smooth_factor,
                            )
    else:
        label = label_parser(m_id, figure_id, label_parser_dict=label_parser_dict)
        label = label #+"({})".format(n_seeds)


        def smooth(x_, n=50):
            if type(x_) == list:
                x_ = np.array(x_)
            return np.array([x_[max(i - n, 0):i + 1].mean() for i in range(len(x_))])
        if smooth_factor:
            means = smooth(means,smooth_factor)
            stds = smooth(stds,smooth_factor)
        x_lim = 30
        if figure_id == "TalkItOutPolite":
            leg_args = {
                'ncol': 1,
                'columnspacing': 1.0,
                'handlelength': 1.0,
                'frameon': False,
                # 'bbox_to_anchor': (0.00, 0.23, 0.10, .102),
                'bbox_to_anchor': (0.55, 0.35, 0.10, .102),
                'labelspacing': 0.2,
                'fontsize': 27
            }
        elif figure_id == "Help":
            leg_args = {
                'ncol': 1,
                'columnspacing': 1.0,
                'handlelength': 1.0,
                'frameon': False,
                # 'bbox_to_anchor': (0.00, 0.23, 0.10, .102),
                'bbox_to_anchor': (0.39, 0.20, 0.10, .102),
                'labelspacing': 0.2,
                'fontsize': 27
            }
        else:
            leg_args = {}

        color_code = dict([
            ('PPO+Explo', 'indianred'),
            ('PPO', "#1f77b4"),
            ('Unsocial PPO', "grey"),
            ('PPO (no liar)', "#043252"),
            ('PPO+Explo (no liar)', "darkred"),
            ('Unsocial PPO (no liar)', "black"),
            ('PPO+Explo (helper)', 'indianred'),
            ('PPO (helper)', "#1f77b4"),
            ('Unsocial PPO (helper)', "grey")]
        )
        color = color_code.get(label, np.random.choice(default_colors))
        print("C:",color)
        plot_with_shade_grg(
            0, ax[0], steps, means, stds, color, color, label,
                    legend=True,
                    xlim=[0, steps[-1] if not x_lim else x_lim],
                    ylim=[0, 1.0], xlabel="env steps (millions)", ylabel=ylabel, title=None,
                        leg_args =leg_args)
        #
        # plot_with_shade(0, ax[0], steps, means, stds, color, color,label,
        #         legend=True, xlim=[0, max_steps], ylim=[min_y, max_y],
        #                 leg_size=leg_size, xlabel="Env steps (millions)", ylabel=ylabel, linewidth=5.0, smooth_factor=smooth_factor)


for label, (mean, std, color) in static_lines.items():
    plot_with_shade_grg(
        0, ax[0], steps, np.array([mean]*len(steps)), np.array([std]*len(steps)), color, color, label,
                    legend=True,
                    xlim=[0, max_steps],
                    ylim=[0, 1.0],
                    xlabel="env steps (millions)", ylabel=ylabel, linestyle=":",
                    leg_args=leg_args)

plt.tight_layout()
f.savefig('graphics/{}_results.svg'.format(str(figure_id)))
f.savefig('graphics/{}_results.png'.format(str(figure_id)))
plt.show()