File size: 20,844 Bytes
be5548b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
import numpy as np

from gym_minigrid.minigrid import *
from gym_minigrid.register import register
 
import time
from collections import deque

class TeacherPeer(NPC):
    """
    A dancing NPC that the agent has to copy
    """

    def __init__(self, color, name, env, npc_type=0, knowledgeable=False, easier=False, idl=False):
        super().__init__(color)
        self.name = name
        self.npc_dir = 1  # NPC initially looks downward
        self.npc_type = npc_type
        self.env = env
        self.knowledgeable = knowledgeable
        self.npc_actions = []
        self.dancing_step_idx = 0
        self.actions = MiniGridEnv.Actions
        self.add_npc_direction = True
        self.available_moves = [self.rotate_left, self.rotate_right, self.go_forward, self.toggle_action]
        self.was_introduced_to = False
        self.easier = easier
        assert not self.easier
        self.idl = idl

        self.must_eye_contact = True if (self.npc_type // 3) % 2 == 0 else False
        self.wanted_intro_utterances = [
            EasyTeachingGamesGrammar.construct_utterance([2, 2]),
            EasyTeachingGamesGrammar.construct_utterance([0, 1])
        ]
        self.wanted_intro_utterance = self.wanted_intro_utterances[0] if (self.npc_type // 3) // 2 == 0 else self.wanted_intro_utterances[1]
        if self.npc_type % 3 == 0:
            # must be far, must not poke
            self.must_be_poked = False
            self.must_be_close = False

        elif self.npc_type % 3 == 1:
            # must be close, must not poke
            self.must_be_poked = False
            self.must_be_close = True

        elif self.npc_type % 3 == 2:
            # must be close, must poke
            self.must_be_poked = True
            self.must_be_close = True

        else:
            raise ValueError("npc tyep {} unknown". format(self.npc_type))

        # print("Peer type: ", self.npc_type)
        # print("Peer conf: ", self.wanted_intro_utterance, self.must_eye_contact, self.must_be_close, self.must_be_poked)


        if self.must_be_poked and not self.must_be_close:
            raise ValueError("Must be poked means it must be close also.")

        self.poked = False

        self.exited = False
        self.joint_attention_achieved = False

    def toggle(self, env, pos):
        """Method to trigger/toggle an action this object performs"""
        self.poked = True
        return True

    def is_introduction_state_ok(self):
        if (self.must_be_poked and self.introduction_state["poked"]) or (
                not self.must_be_poked and not self.introduction_state["poked"]):
            if (self.must_be_close and self.introduction_state["close"]) or (
                    not self.must_be_close and not self.introduction_state["close"]):
                if (self.must_eye_contact and self.introduction_state["eye_contact"]) or (
                    not self.must_eye_contact and not self.introduction_state["eye_contact"]
                ):
                    if self.introduction_state["intro_utterance"] == self.wanted_intro_utterance:
                        return True

        return False

    def can_overlap(self):
        # If the NPC is hidden, agent can overlap on it
        return self.env.hidden_npc

    def encode(self, nb_dims=3):
        if self.env.hidden_npc:
            if nb_dims == 3:
                return (1, 0, 0)
            elif nb_dims == 4:
                return (1, 0, 0, 0)
        else:
            return super().encode(nb_dims=nb_dims)

    def step(self, agent_utterance):
        super().step()

        if self.knowledgeable:
            if self.easier:
                raise DeprecationWarning()
                # wanted_dir = self.compute_wanted_dir(self.env.agent_pos)
                # action = self.compute_turn_action(wanted_dir)
                # action()
                # if not self.was_introduced_to and (agent_utterance in self.wanted_intro_utterances):
                #     self.was_introduced_to = True
                #     self.introduction_state = {
                #         "poked": self.poked,
                #         "close": self.is_near_agent(),
                #         "eye_contact": self.is_eye_contact(),
                #         "correct_intro_utterance": agent_utterance == self.wanted_intro_utterance
                #     }
                #     if self.is_introduction_state_ok():
                #         utterance = "Go to the {} door \n".format(self.env.target_color)
                #         return utterance

            else:
                wanted_dir = self.compute_wanted_dir(self.env.agent_pos)
                action = self.compute_turn_action(wanted_dir)
                action()
                if not self.was_introduced_to and (agent_utterance in self.wanted_intro_utterances):
                    self.was_introduced_to = True
                    self.introduction_state = {
                        "poked": self.poked,
                        "close": self.is_near_agent(),
                        "eye_contact": self.is_eye_contact(),
                        "intro_utterance": agent_utterance,
                    }
                    if not self.is_introduction_state_ok():
                        if self.idl:
                            if self.env.hidden_npc:
                                return None
                            else:
                                return "I don't like that \n"
                        else:
                            return None

                if self.is_eye_contact() and self.was_introduced_to:

                    if self.is_introduction_state_ok():
                        utterance = "Go to the {} door \n".format(self.env.target_color)
                        if self.env.hidden_npc:
                            return None
                        else:
                            return utterance
                    else:
                        # no utterance
                        return None

        else:
            self.env._rand_elem(self.available_moves)()
            return None


    def render(self, img):
        c = COLORS[self.color]

        npc_shapes = []
        # Draw eyes

        if self.npc_type % 3 == 0:
            npc_shapes.append(point_in_circle(cx=0.70, cy=0.50, r=0.10))
            npc_shapes.append(point_in_circle(cx=0.30, cy=0.50, r=0.10))
            # Draw mouth
            npc_shapes.append(point_in_rect(0.20, 0.80, 0.72, 0.81))
            # Draw top hat
            npc_shapes.append(point_in_rect(0.30, 0.70, 0.05, 0.28))

        elif self.npc_type % 3 == 1:
            npc_shapes.append(point_in_circle(cx=0.70, cy=0.50, r=0.10))
            npc_shapes.append(point_in_circle(cx=0.30, cy=0.50, r=0.10))
            # Draw mouth
            npc_shapes.append(point_in_rect(0.20, 0.80, 0.72, 0.81))
            # Draw bottom hat
            npc_shapes.append(point_in_triangle((0.15, 0.28),
                                                (0.85, 0.28),
                                                (0.50, 0.05)))
        elif self.npc_type % 3 == 2:
            npc_shapes.append(point_in_circle(cx=0.70, cy=0.50, r=0.10))
            npc_shapes.append(point_in_circle(cx=0.30, cy=0.50, r=0.10))
            # Draw mouth
            npc_shapes.append(point_in_rect(0.20, 0.80, 0.72, 0.81))
            # Draw bottom hat
            npc_shapes.append(point_in_triangle((0.15, 0.28),
                                                (0.85, 0.28),
                                                (0.50, 0.05)))
            # Draw top hat
            npc_shapes.append(point_in_rect(0.30, 0.70, 0.05, 0.28))


        # todo: move this to super function
        # todo: super.render should be able to take the npc_shapes and then rotate them

        if hasattr(self, "npc_dir"):
            # Pre-rotation to ensure npc_dir = 1 means NPC looks downwards
            npc_shapes = [rotate_fn(v, cx=0.5, cy=0.5, theta=-1 * (math.pi / 2)) for v in npc_shapes]
            # Rotate npc based on its direction
            npc_shapes = [rotate_fn(v, cx=0.5, cy=0.5, theta=(math.pi / 2) * self.npc_dir) for v in npc_shapes]

        # Draw shapes
        for v in npc_shapes:
            fill_coords(img, v, c)

# class EasyTeachingGamesSmallGrammar(object):
#
#     templates = ["Where is", "Open", "What is"]
#     things = ["sesame", "the exit", "the password"]
#
#     grammar_action_space = spaces.MultiDiscrete([len(templates), len(things)])
#
#     @classmethod
#     def construct_utterance(cls, action):
#         if all(np.isnan(action)):
#             return ""
#         return cls.templates[int(action[0])] + " " + cls.things[int(action[1])] + " "


class EasyTeachingGamesGrammar(object):

    templates = ["Where is", "Open", "Which is", "How are"]
    things = [
        "sesame", "the exit", "the correct door", "you", "the ceiling", "the window", "the entrance", "the closet",
        "the drawer", "the fridge", "the floor", "the lamp", "the trash can", "the chair", "the bed", "the sofa"
    ]

    grammar_action_space = spaces.MultiDiscrete([len(templates), len(things)])

    @classmethod
    def construct_utterance(cls, action):
        if all(np.isnan(action)):
            return ""
        return cls.templates[int(action[0])] + " " + cls.things[int(action[1])] + " "


class EasyTeachingGamesEnv(MultiModalMiniGridEnv):
    """
    Environment in which the agent is instructed to go to a given object
    named using an English text string
    """

    def __init__(
        self,
        size=5,
        diminished_reward=True,
        step_penalty=False,
        knowledgeable=False,
        hard_password=False,
        max_steps=50,
        n_switches=3,
        peer_type=None,
        no_turn_off=False,
        easier=False,
        idl=False,
        hidden_npc = False,
    ):
        assert size >= 5
        self.empty_symbol = "NA \n"
        self.diminished_reward = diminished_reward
        self.step_penalty = step_penalty
        self.knowledgeable = knowledgeable
        self.hard_password = hard_password
        self.n_switches = n_switches
        self.peer_type = peer_type
        self.no_turn_off = no_turn_off
        self.easier = easier
        self.idl = idl
        self.hidden_npc = hidden_npc

        super().__init__(
            grid_size=size,
            max_steps=max_steps,
            # Set this to True for maximum speed
            see_through_walls=True,
            actions=MiniGridEnv.Actions,
            action_space=spaces.MultiDiscrete([
                len(MiniGridEnv.Actions),
                *EasyTeachingGamesGrammar.grammar_action_space.nvec
            ]),
            add_npc_direction=True
        )

        print({
            "size": size,
            "diminished_reward": diminished_reward,
            "step_penalty": step_penalty,
        })


    def _gen_grid(self, width, height):
        # Create the grid
        self.grid = Grid(width, height, nb_obj_dims=4)

        # Randomly vary the room width and height
        width = self._rand_int(5, width+1)
        height = self._rand_int(5, height+1)

        self.wall_x = width - 1
        self.wall_y = height - 1

        # Generate the surrounding walls
        self.grid.wall_rect(0, 0, width, height)

        self.door_pos = []
        self.door_front_pos = []  # Remembers positions in front of door to avoid setting wizard here

        self.door_pos.append((self._rand_int(2, width-2), 0))
        self.door_front_pos.append((self.door_pos[-1][0], self.door_pos[-1][1]+1))

        self.door_pos.append((self._rand_int(2, width-2), height-1))
        self.door_front_pos.append((self.door_pos[-1][0], self.door_pos[-1][1] - 1))

        self.door_pos.append((0, self._rand_int(2, height-2)))
        self.door_front_pos.append((self.door_pos[-1][0] + 1, self.door_pos[-1][1]))

        self.door_pos.append((width-1, self._rand_int(2, height-2)))
        self.door_front_pos.append((self.door_pos[-1][0] - 1, self.door_pos[-1][1]))

        # Generate the door colors
        self.door_colors = []
        while len(self.door_colors) < len(self.door_pos):
            color = self._rand_elem(COLOR_NAMES)
            if color in self.door_colors:
                continue
            self.door_colors.append(color)

        # Place the doors in the grid
        for idx, pos in enumerate(self.door_pos):
            color = self.door_colors[idx]
            self.grid.set(*pos, Door(color))

        # Select a random target door
        self.doorIdx = self._rand_int(0, len(self.door_pos))
        self.target_pos = self.door_pos[self.doorIdx]
        self.target_color = self.door_colors[self.doorIdx]

        # Set a randomly coloured Dancer NPC
        color = self._rand_elem(COLOR_NAMES)

        if self.peer_type is None:
            self.current_peer_type = self._rand_int(0, 12)
        else:
            self.current_peer_type = self.peer_type

        self.peer = TeacherPeer(
            color,
            ["Bobby", "Robby", "Toby"][self.current_peer_type % 3],
            self,
            knowledgeable=self.knowledgeable,
            npc_type=self.current_peer_type,
            easier=self.easier,
            idl=self.idl
        )

        # height -2 so its not in front of the buttons in the way
        while True:
            peer_pos = np.array((self._rand_int(1, width - 1), self._rand_int(1, height - 2)))

            if (
                # not in front of any door
                not tuple(peer_pos) in self.door_front_pos
            ) and (
                # no_close npc is not in the middle of the 5x5 env
                not (not self.peer.must_be_close and (width == 5 and height == 5) and all(peer_pos == (2, 2)))
            ):
                break

        self.grid.set(*peer_pos, self.peer)
        self.peer.init_pos = peer_pos
        self.peer.cur_pos = peer_pos

        # Randomize the agent's start position and orientation
        self.place_agent(size=(width, height))

        # Generate the mission string
        self.mission = 'exit the room'

        # Dummy beginning string
        self.beginning_string = "This is what you hear. \n"
        self.utterance = self.beginning_string

        # utterance appended at the end of each step
        self.utterance_history = ""

        # used for rendering
        self.conversation = self.utterance
        self.outcome_info = None


    def step(self, action):
        p_action = action[0]
        utterance_action = action[1:]

        obs, reward, done, info = super().step(p_action)

        if p_action == self.actions.done:
            done = True

        peer_utterance = EasyTeachingGamesGrammar.construct_utterance(utterance_action)
        peer_reply = self.peer.step(peer_utterance)

        if peer_reply is not None:
            self.utterance += "{}: {} \n".format(self.peer.name, peer_reply)
            self.conversation += "{}: {} \n".format(self.peer.name, peer_reply)

        if all(self.agent_pos == self.target_pos):
            done = True
            reward = self._reward()

        elif tuple(self.agent_pos) in self.door_pos:
            done = True

        # discount
        if self.step_penalty:
            reward = reward - 0.01

        if self.hidden_npc:
            # all npc are hidden
            assert np.argwhere(obs['image'][:,:,0] == OBJECT_TO_IDX['npc']).size == 0
            assert "{}:".format(self.peer.name) not in self.utterance

        # fill observation with text
        self.append_existing_utterance_to_history()
        obs = self.add_utterance_to_observation(obs)
        self.reset_utterance()

        if done:
            if reward > 0:
                self.outcome_info = "SUCCESS: agent got {} reward \n".format(np.round(reward, 1))
            else:
                self.outcome_info = "FAILURE: agent got {} reward \n".format(reward)

        return obs, reward, done, info

    def _reward(self):
        if self.diminished_reward:
            return super()._reward()
        else:
            return 1.0

    def render(self, *args, **kwargs):
        obs = super().render(*args, **kwargs)
        self.window.clear_text()  # erase previous text

        self.window.set_caption(self.conversation, self.peer.name)

        self.window.ax.set_title("correct door: {}".format(self.target_color), loc="left", fontsize=10)
        if self.outcome_info:
            color = None
            if "SUCCESS" in self.outcome_info:
                color = "lime"
            elif "FAILURE" in self.outcome_info:
                color = "red"
            self.window.add_text(*(0.01, 0.85, self.outcome_info),
                                 **{'fontsize':15, 'color':color, 'weight':"bold"})

        self.window.show_img(obs)  # re-draw image to add changes to window
        return obs


# # must be far, must not poke
# class EasyTeachingGames8x8Env(EasyTeachingGamesEnv):
#     def __init__(self):
#         super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=0)
#
# # must be close, must not poke
# class EasyTeachingGamesClose8x8Env(EasyTeachingGamesEnv):
#     def __init__(self):
#         super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=1)
#
# # must be close, must poke
# class EasyTeachingGamesPoke8x8Env(EasyTeachingGamesEnv):
#     def __init__(self):
#         super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=2)
#
# # 100 multi
# class EasyTeachingGamesMulti8x8Env(EasyTeachingGamesEnv):
#     def __init__(self):
#         super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=None)
#
#
#
# # speaking 50 steps
# register(
#     id='MiniGrid-EasyTeachingGames-8x8-v0',
#     entry_point='gym_minigrid.envs:EasyTeachingGames8x8Env'
# )
#
# # demonstrating 50 steps
# register(
#     id='MiniGrid-EasyTeachingGamesPoke-8x8-v0',
#     entry_point='gym_minigrid.envs:EasyTeachingGamesPoke8x8Env'
# )
#
# # demonstrating 50 steps
# register(
#     id='MiniGrid-EasyTeachingGamesClose-8x8-v0',
#     entry_point='gym_minigrid.envs:EasyTeachingGamesClose8x8Env'
# )
#
# # speaking 50 steps
# register(
#     id='MiniGrid-EasyTeachingGamesMulti-8x8-v0',
#     entry_point='gym_minigrid.envs:EasyTeachingGamesMulti8x8Env'
# )

# # must be far, must not poke
# class EasierTeachingGames8x8Env(EasyTeachingGamesEnv):
#     def __init__(self):
#         super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=0, easier=True)
#
# # must be close, must not poke
# class EasierTeachingGamesClose8x8Env(EasyTeachingGamesEnv):
#     def __init__(self):
#         super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=1, easier=True)
#
# # must be close, must poke
# class EasierTeachingGamesPoke8x8Env(EasyTeachingGamesEnv):
#     def __init__(self):
#         super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=2, easier=True)
#
# # 100 multi
# class EasierTeachingGamesMulti8x8Env(EasyTeachingGamesEnv):
#     def __init__(self):
#         super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=None, easier=True)
#
# # Multi Many
# class ManyTeachingGamesMulti8x8Env(EasyTeachingGamesEnv):
#     def __init__(self):
#         super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=None, easier=False, many=True)
#
# class ManyTeachingGamesMultiIDL8x8Env(EasyTeachingGamesEnv):
#     def __init__(self):
#         super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=None, easier=False, many=True, idl=True)


# # speaking 50 steps
# register(
#     id='MiniGrid-EasierTeachingGames-8x8-v0',
#     entry_point='gym_minigrid.envs:EasierTeachingGames8x8Env'
# )
#
# # demonstrating 50 steps
# register(
#     id='MiniGrid-EasierTeachingGamesPoke-8x8-v0',
#     entry_point='gym_minigrid.envs:EasierTeachingGamesPoke8x8Env'
# )
#
# # demonstrating 50 steps
# register(
#     id='MiniGrid-EasierTeachingGamesClose-8x8-v0',
#     entry_point='gym_minigrid.envs:EasierTeachingGamesClose8x8Env'
# )
#
# # speaking 50 steps
# register(
#     id='MiniGrid-EasierTeachingGamesMulti-8x8-v0',
#     entry_point='gym_minigrid.envs:EasierTeachingGamesMulti8x8Env'
# )
#
# # speaking 50 steps
# register(
#     id='MiniGrid-ManyTeachingGamesMulti-8x8-v0',
#     entry_point='gym_minigrid.envs:ManyTeachingGamesMulti8x8Env'
# )
#
# # speaking 50 steps
# register(
#     id='MiniGrid-ManyTeachingGamesMultiIDL-8x8-v0',
#     entry_point='gym_minigrid.envs:ManyTeachingGamesMultiIDL8x8Env'
# )

# Multi Many
class DiverseExit8x8Env(EasyTeachingGamesEnv):
    def __init__(self, **kwargs):
        super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=None, easier=False, **kwargs)

# speaking 50 steps
register(
    id='MiniGrid-DiverseExit-8x8-v0',
    entry_point='gym_minigrid.envs:DiverseExit8x8Env'
)