Spaces:
Sleeping
Sleeping
File size: 20,844 Bytes
be5548b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 |
import numpy as np
from gym_minigrid.minigrid import *
from gym_minigrid.register import register
import time
from collections import deque
class TeacherPeer(NPC):
"""
A dancing NPC that the agent has to copy
"""
def __init__(self, color, name, env, npc_type=0, knowledgeable=False, easier=False, idl=False):
super().__init__(color)
self.name = name
self.npc_dir = 1 # NPC initially looks downward
self.npc_type = npc_type
self.env = env
self.knowledgeable = knowledgeable
self.npc_actions = []
self.dancing_step_idx = 0
self.actions = MiniGridEnv.Actions
self.add_npc_direction = True
self.available_moves = [self.rotate_left, self.rotate_right, self.go_forward, self.toggle_action]
self.was_introduced_to = False
self.easier = easier
assert not self.easier
self.idl = idl
self.must_eye_contact = True if (self.npc_type // 3) % 2 == 0 else False
self.wanted_intro_utterances = [
EasyTeachingGamesGrammar.construct_utterance([2, 2]),
EasyTeachingGamesGrammar.construct_utterance([0, 1])
]
self.wanted_intro_utterance = self.wanted_intro_utterances[0] if (self.npc_type // 3) // 2 == 0 else self.wanted_intro_utterances[1]
if self.npc_type % 3 == 0:
# must be far, must not poke
self.must_be_poked = False
self.must_be_close = False
elif self.npc_type % 3 == 1:
# must be close, must not poke
self.must_be_poked = False
self.must_be_close = True
elif self.npc_type % 3 == 2:
# must be close, must poke
self.must_be_poked = True
self.must_be_close = True
else:
raise ValueError("npc tyep {} unknown". format(self.npc_type))
# print("Peer type: ", self.npc_type)
# print("Peer conf: ", self.wanted_intro_utterance, self.must_eye_contact, self.must_be_close, self.must_be_poked)
if self.must_be_poked and not self.must_be_close:
raise ValueError("Must be poked means it must be close also.")
self.poked = False
self.exited = False
self.joint_attention_achieved = False
def toggle(self, env, pos):
"""Method to trigger/toggle an action this object performs"""
self.poked = True
return True
def is_introduction_state_ok(self):
if (self.must_be_poked and self.introduction_state["poked"]) or (
not self.must_be_poked and not self.introduction_state["poked"]):
if (self.must_be_close and self.introduction_state["close"]) or (
not self.must_be_close and not self.introduction_state["close"]):
if (self.must_eye_contact and self.introduction_state["eye_contact"]) or (
not self.must_eye_contact and not self.introduction_state["eye_contact"]
):
if self.introduction_state["intro_utterance"] == self.wanted_intro_utterance:
return True
return False
def can_overlap(self):
# If the NPC is hidden, agent can overlap on it
return self.env.hidden_npc
def encode(self, nb_dims=3):
if self.env.hidden_npc:
if nb_dims == 3:
return (1, 0, 0)
elif nb_dims == 4:
return (1, 0, 0, 0)
else:
return super().encode(nb_dims=nb_dims)
def step(self, agent_utterance):
super().step()
if self.knowledgeable:
if self.easier:
raise DeprecationWarning()
# wanted_dir = self.compute_wanted_dir(self.env.agent_pos)
# action = self.compute_turn_action(wanted_dir)
# action()
# if not self.was_introduced_to and (agent_utterance in self.wanted_intro_utterances):
# self.was_introduced_to = True
# self.introduction_state = {
# "poked": self.poked,
# "close": self.is_near_agent(),
# "eye_contact": self.is_eye_contact(),
# "correct_intro_utterance": agent_utterance == self.wanted_intro_utterance
# }
# if self.is_introduction_state_ok():
# utterance = "Go to the {} door \n".format(self.env.target_color)
# return utterance
else:
wanted_dir = self.compute_wanted_dir(self.env.agent_pos)
action = self.compute_turn_action(wanted_dir)
action()
if not self.was_introduced_to and (agent_utterance in self.wanted_intro_utterances):
self.was_introduced_to = True
self.introduction_state = {
"poked": self.poked,
"close": self.is_near_agent(),
"eye_contact": self.is_eye_contact(),
"intro_utterance": agent_utterance,
}
if not self.is_introduction_state_ok():
if self.idl:
if self.env.hidden_npc:
return None
else:
return "I don't like that \n"
else:
return None
if self.is_eye_contact() and self.was_introduced_to:
if self.is_introduction_state_ok():
utterance = "Go to the {} door \n".format(self.env.target_color)
if self.env.hidden_npc:
return None
else:
return utterance
else:
# no utterance
return None
else:
self.env._rand_elem(self.available_moves)()
return None
def render(self, img):
c = COLORS[self.color]
npc_shapes = []
# Draw eyes
if self.npc_type % 3 == 0:
npc_shapes.append(point_in_circle(cx=0.70, cy=0.50, r=0.10))
npc_shapes.append(point_in_circle(cx=0.30, cy=0.50, r=0.10))
# Draw mouth
npc_shapes.append(point_in_rect(0.20, 0.80, 0.72, 0.81))
# Draw top hat
npc_shapes.append(point_in_rect(0.30, 0.70, 0.05, 0.28))
elif self.npc_type % 3 == 1:
npc_shapes.append(point_in_circle(cx=0.70, cy=0.50, r=0.10))
npc_shapes.append(point_in_circle(cx=0.30, cy=0.50, r=0.10))
# Draw mouth
npc_shapes.append(point_in_rect(0.20, 0.80, 0.72, 0.81))
# Draw bottom hat
npc_shapes.append(point_in_triangle((0.15, 0.28),
(0.85, 0.28),
(0.50, 0.05)))
elif self.npc_type % 3 == 2:
npc_shapes.append(point_in_circle(cx=0.70, cy=0.50, r=0.10))
npc_shapes.append(point_in_circle(cx=0.30, cy=0.50, r=0.10))
# Draw mouth
npc_shapes.append(point_in_rect(0.20, 0.80, 0.72, 0.81))
# Draw bottom hat
npc_shapes.append(point_in_triangle((0.15, 0.28),
(0.85, 0.28),
(0.50, 0.05)))
# Draw top hat
npc_shapes.append(point_in_rect(0.30, 0.70, 0.05, 0.28))
# todo: move this to super function
# todo: super.render should be able to take the npc_shapes and then rotate them
if hasattr(self, "npc_dir"):
# Pre-rotation to ensure npc_dir = 1 means NPC looks downwards
npc_shapes = [rotate_fn(v, cx=0.5, cy=0.5, theta=-1 * (math.pi / 2)) for v in npc_shapes]
# Rotate npc based on its direction
npc_shapes = [rotate_fn(v, cx=0.5, cy=0.5, theta=(math.pi / 2) * self.npc_dir) for v in npc_shapes]
# Draw shapes
for v in npc_shapes:
fill_coords(img, v, c)
# class EasyTeachingGamesSmallGrammar(object):
#
# templates = ["Where is", "Open", "What is"]
# things = ["sesame", "the exit", "the password"]
#
# grammar_action_space = spaces.MultiDiscrete([len(templates), len(things)])
#
# @classmethod
# def construct_utterance(cls, action):
# if all(np.isnan(action)):
# return ""
# return cls.templates[int(action[0])] + " " + cls.things[int(action[1])] + " "
class EasyTeachingGamesGrammar(object):
templates = ["Where is", "Open", "Which is", "How are"]
things = [
"sesame", "the exit", "the correct door", "you", "the ceiling", "the window", "the entrance", "the closet",
"the drawer", "the fridge", "the floor", "the lamp", "the trash can", "the chair", "the bed", "the sofa"
]
grammar_action_space = spaces.MultiDiscrete([len(templates), len(things)])
@classmethod
def construct_utterance(cls, action):
if all(np.isnan(action)):
return ""
return cls.templates[int(action[0])] + " " + cls.things[int(action[1])] + " "
class EasyTeachingGamesEnv(MultiModalMiniGridEnv):
"""
Environment in which the agent is instructed to go to a given object
named using an English text string
"""
def __init__(
self,
size=5,
diminished_reward=True,
step_penalty=False,
knowledgeable=False,
hard_password=False,
max_steps=50,
n_switches=3,
peer_type=None,
no_turn_off=False,
easier=False,
idl=False,
hidden_npc = False,
):
assert size >= 5
self.empty_symbol = "NA \n"
self.diminished_reward = diminished_reward
self.step_penalty = step_penalty
self.knowledgeable = knowledgeable
self.hard_password = hard_password
self.n_switches = n_switches
self.peer_type = peer_type
self.no_turn_off = no_turn_off
self.easier = easier
self.idl = idl
self.hidden_npc = hidden_npc
super().__init__(
grid_size=size,
max_steps=max_steps,
# Set this to True for maximum speed
see_through_walls=True,
actions=MiniGridEnv.Actions,
action_space=spaces.MultiDiscrete([
len(MiniGridEnv.Actions),
*EasyTeachingGamesGrammar.grammar_action_space.nvec
]),
add_npc_direction=True
)
print({
"size": size,
"diminished_reward": diminished_reward,
"step_penalty": step_penalty,
})
def _gen_grid(self, width, height):
# Create the grid
self.grid = Grid(width, height, nb_obj_dims=4)
# Randomly vary the room width and height
width = self._rand_int(5, width+1)
height = self._rand_int(5, height+1)
self.wall_x = width - 1
self.wall_y = height - 1
# Generate the surrounding walls
self.grid.wall_rect(0, 0, width, height)
self.door_pos = []
self.door_front_pos = [] # Remembers positions in front of door to avoid setting wizard here
self.door_pos.append((self._rand_int(2, width-2), 0))
self.door_front_pos.append((self.door_pos[-1][0], self.door_pos[-1][1]+1))
self.door_pos.append((self._rand_int(2, width-2), height-1))
self.door_front_pos.append((self.door_pos[-1][0], self.door_pos[-1][1] - 1))
self.door_pos.append((0, self._rand_int(2, height-2)))
self.door_front_pos.append((self.door_pos[-1][0] + 1, self.door_pos[-1][1]))
self.door_pos.append((width-1, self._rand_int(2, height-2)))
self.door_front_pos.append((self.door_pos[-1][0] - 1, self.door_pos[-1][1]))
# Generate the door colors
self.door_colors = []
while len(self.door_colors) < len(self.door_pos):
color = self._rand_elem(COLOR_NAMES)
if color in self.door_colors:
continue
self.door_colors.append(color)
# Place the doors in the grid
for idx, pos in enumerate(self.door_pos):
color = self.door_colors[idx]
self.grid.set(*pos, Door(color))
# Select a random target door
self.doorIdx = self._rand_int(0, len(self.door_pos))
self.target_pos = self.door_pos[self.doorIdx]
self.target_color = self.door_colors[self.doorIdx]
# Set a randomly coloured Dancer NPC
color = self._rand_elem(COLOR_NAMES)
if self.peer_type is None:
self.current_peer_type = self._rand_int(0, 12)
else:
self.current_peer_type = self.peer_type
self.peer = TeacherPeer(
color,
["Bobby", "Robby", "Toby"][self.current_peer_type % 3],
self,
knowledgeable=self.knowledgeable,
npc_type=self.current_peer_type,
easier=self.easier,
idl=self.idl
)
# height -2 so its not in front of the buttons in the way
while True:
peer_pos = np.array((self._rand_int(1, width - 1), self._rand_int(1, height - 2)))
if (
# not in front of any door
not tuple(peer_pos) in self.door_front_pos
) and (
# no_close npc is not in the middle of the 5x5 env
not (not self.peer.must_be_close and (width == 5 and height == 5) and all(peer_pos == (2, 2)))
):
break
self.grid.set(*peer_pos, self.peer)
self.peer.init_pos = peer_pos
self.peer.cur_pos = peer_pos
# Randomize the agent's start position and orientation
self.place_agent(size=(width, height))
# Generate the mission string
self.mission = 'exit the room'
# Dummy beginning string
self.beginning_string = "This is what you hear. \n"
self.utterance = self.beginning_string
# utterance appended at the end of each step
self.utterance_history = ""
# used for rendering
self.conversation = self.utterance
self.outcome_info = None
def step(self, action):
p_action = action[0]
utterance_action = action[1:]
obs, reward, done, info = super().step(p_action)
if p_action == self.actions.done:
done = True
peer_utterance = EasyTeachingGamesGrammar.construct_utterance(utterance_action)
peer_reply = self.peer.step(peer_utterance)
if peer_reply is not None:
self.utterance += "{}: {} \n".format(self.peer.name, peer_reply)
self.conversation += "{}: {} \n".format(self.peer.name, peer_reply)
if all(self.agent_pos == self.target_pos):
done = True
reward = self._reward()
elif tuple(self.agent_pos) in self.door_pos:
done = True
# discount
if self.step_penalty:
reward = reward - 0.01
if self.hidden_npc:
# all npc are hidden
assert np.argwhere(obs['image'][:,:,0] == OBJECT_TO_IDX['npc']).size == 0
assert "{}:".format(self.peer.name) not in self.utterance
# fill observation with text
self.append_existing_utterance_to_history()
obs = self.add_utterance_to_observation(obs)
self.reset_utterance()
if done:
if reward > 0:
self.outcome_info = "SUCCESS: agent got {} reward \n".format(np.round(reward, 1))
else:
self.outcome_info = "FAILURE: agent got {} reward \n".format(reward)
return obs, reward, done, info
def _reward(self):
if self.diminished_reward:
return super()._reward()
else:
return 1.0
def render(self, *args, **kwargs):
obs = super().render(*args, **kwargs)
self.window.clear_text() # erase previous text
self.window.set_caption(self.conversation, self.peer.name)
self.window.ax.set_title("correct door: {}".format(self.target_color), loc="left", fontsize=10)
if self.outcome_info:
color = None
if "SUCCESS" in self.outcome_info:
color = "lime"
elif "FAILURE" in self.outcome_info:
color = "red"
self.window.add_text(*(0.01, 0.85, self.outcome_info),
**{'fontsize':15, 'color':color, 'weight':"bold"})
self.window.show_img(obs) # re-draw image to add changes to window
return obs
# # must be far, must not poke
# class EasyTeachingGames8x8Env(EasyTeachingGamesEnv):
# def __init__(self):
# super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=0)
#
# # must be close, must not poke
# class EasyTeachingGamesClose8x8Env(EasyTeachingGamesEnv):
# def __init__(self):
# super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=1)
#
# # must be close, must poke
# class EasyTeachingGamesPoke8x8Env(EasyTeachingGamesEnv):
# def __init__(self):
# super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=2)
#
# # 100 multi
# class EasyTeachingGamesMulti8x8Env(EasyTeachingGamesEnv):
# def __init__(self):
# super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=None)
#
#
#
# # speaking 50 steps
# register(
# id='MiniGrid-EasyTeachingGames-8x8-v0',
# entry_point='gym_minigrid.envs:EasyTeachingGames8x8Env'
# )
#
# # demonstrating 50 steps
# register(
# id='MiniGrid-EasyTeachingGamesPoke-8x8-v0',
# entry_point='gym_minigrid.envs:EasyTeachingGamesPoke8x8Env'
# )
#
# # demonstrating 50 steps
# register(
# id='MiniGrid-EasyTeachingGamesClose-8x8-v0',
# entry_point='gym_minigrid.envs:EasyTeachingGamesClose8x8Env'
# )
#
# # speaking 50 steps
# register(
# id='MiniGrid-EasyTeachingGamesMulti-8x8-v0',
# entry_point='gym_minigrid.envs:EasyTeachingGamesMulti8x8Env'
# )
# # must be far, must not poke
# class EasierTeachingGames8x8Env(EasyTeachingGamesEnv):
# def __init__(self):
# super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=0, easier=True)
#
# # must be close, must not poke
# class EasierTeachingGamesClose8x8Env(EasyTeachingGamesEnv):
# def __init__(self):
# super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=1, easier=True)
#
# # must be close, must poke
# class EasierTeachingGamesPoke8x8Env(EasyTeachingGamesEnv):
# def __init__(self):
# super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=2, easier=True)
#
# # 100 multi
# class EasierTeachingGamesMulti8x8Env(EasyTeachingGamesEnv):
# def __init__(self):
# super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=None, easier=True)
#
# # Multi Many
# class ManyTeachingGamesMulti8x8Env(EasyTeachingGamesEnv):
# def __init__(self):
# super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=None, easier=False, many=True)
#
# class ManyTeachingGamesMultiIDL8x8Env(EasyTeachingGamesEnv):
# def __init__(self):
# super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=None, easier=False, many=True, idl=True)
# # speaking 50 steps
# register(
# id='MiniGrid-EasierTeachingGames-8x8-v0',
# entry_point='gym_minigrid.envs:EasierTeachingGames8x8Env'
# )
#
# # demonstrating 50 steps
# register(
# id='MiniGrid-EasierTeachingGamesPoke-8x8-v0',
# entry_point='gym_minigrid.envs:EasierTeachingGamesPoke8x8Env'
# )
#
# # demonstrating 50 steps
# register(
# id='MiniGrid-EasierTeachingGamesClose-8x8-v0',
# entry_point='gym_minigrid.envs:EasierTeachingGamesClose8x8Env'
# )
#
# # speaking 50 steps
# register(
# id='MiniGrid-EasierTeachingGamesMulti-8x8-v0',
# entry_point='gym_minigrid.envs:EasierTeachingGamesMulti8x8Env'
# )
#
# # speaking 50 steps
# register(
# id='MiniGrid-ManyTeachingGamesMulti-8x8-v0',
# entry_point='gym_minigrid.envs:ManyTeachingGamesMulti8x8Env'
# )
#
# # speaking 50 steps
# register(
# id='MiniGrid-ManyTeachingGamesMultiIDL-8x8-v0',
# entry_point='gym_minigrid.envs:ManyTeachingGamesMultiIDL8x8Env'
# )
# Multi Many
class DiverseExit8x8Env(EasyTeachingGamesEnv):
def __init__(self, **kwargs):
super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=None, easier=False, **kwargs)
# speaking 50 steps
register(
id='MiniGrid-DiverseExit-8x8-v0',
entry_point='gym_minigrid.envs:DiverseExit8x8Env'
)
|