Spaces:
Sleeping
Sleeping
File size: 6,412 Bytes
be5548b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
from gym_minigrid.minigrid import *
from gym_minigrid.register import register
class TalkHardSesameGrammar(object):
templates = ["Where is", "Open"]
things = ["sesame", "the exit"]
grammar_action_space = spaces.MultiDiscrete([len(templates), len(things)])
@classmethod
def construct_utterance(cls, action):
return cls.templates[int(action[0])] + " " + cls.things[int(action[1])] + " "
class GoToDoorTalkHardSesameEnv(MultiModalMiniGridEnv):
"""
Environment in which the agent is instructed to go to a given object
named using an English text string
"""
def __init__(
self,
size=5,
hear_yourself=False,
):
assert size >= 5
super().__init__(
grid_size=size,
max_steps=5*size**2,
# Set this to True for maximum speed
see_through_walls=True,
actions=MiniGridEnv.Actions,
action_space=spaces.MultiDiscrete([
len(MiniGridEnv.Actions),
*TalkHardSesameGrammar.grammar_action_space.nvec
])
)
self.hear_yourself = hear_yourself
self.empty_symbol = "NA \n"
def _gen_grid(self, width, height):
# Create the grid
self.grid = Grid(width, height)
# Randomly vary the room width and height
width = self._rand_int(5, width+1)
height = self._rand_int(5, height+1)
# Generate the surrounding walls
self.grid.wall_rect(0, 0, width, height)
# Generate the 4 doors at random positions
self.doorPos = []
self.doorPos.append((self._rand_int(2, width-2), 0))
self.doorPos.append((self._rand_int(2, width-2), height-1))
self.doorPos.append((0, self._rand_int(2, height-2)))
self.doorPos.append((width-1, self._rand_int(2, height-2)))
# Generate the door colors
doorColors = []
while len(doorColors) < len(self.doorPos):
color = self._rand_elem(COLOR_NAMES)
if color in doorColors:
continue
doorColors.append(color)
# Place the doors in the grid
for idx, pos in enumerate(self.doorPos):
color = doorColors[idx]
self.grid.set(*pos, Door(color))
# Randomize the agent start position and orientation
self.place_agent(size=(width, height))
# Select a random target door
doorIdx = self._rand_int(0, len(self.doorPos))
self.target_pos = self.doorPos[doorIdx]
self.target_color = doorColors[doorIdx]
# Generate the mission string
self.mission = 'go to the %s door' % self.target_color
# Dummy beginning string
self.beginning_string = "This is what you hear. \n"
self.utterance = self.beginning_string
# utterance appended at the end of each step
self.utterance_history = ""
def step(self, action):
p_action = action[0]
utterance_action = action[1:]
# assert all nan or neither nan
assert len(set(np.isnan(utterance_action))) == 1
speak_flag = not all(np.isnan(utterance_action))
obs, reward, done, info = super().step(p_action)
if speak_flag:
utterance = TalkHardSesameGrammar.construct_utterance(utterance_action)
if self.hear_yourself:
self.utterance += "YOU: {} \n".format(utterance)
if utterance == TalkHardSesameGrammar.construct_utterance([0, 1]):
reply = self.mission
NPC_name = "Wizard"
self.utterance += "{}: {} \n".format(NPC_name, reply) # dummy reply gives mission
elif utterance == TalkHardSesameGrammar.construct_utterance([1, 0]):
ax, ay = self.agent_pos
tx, ty = self.target_pos
if (ax == tx and abs(ay - ty) == 1) or (ay == ty and abs(ax - tx) == 1):
reward = self._reward()
for dx, dy in self.doorPos:
if (ax == dx and abs(ay - dy) == 1) or (ay == dy and abs(ax - dx) == 1):
# agent has chosen some door episode, regardless of if the door is correct the episode is over
done = True
# Don't let the agent open any of the doors
if p_action == self.actions.toggle:
done = True
# fill observation with text
self.append_existing_utterance_to_history()
obs = self.add_utterance_to_observation(obs)
self.reset_utterance()
return obs, reward, done, info
def render(self, *args, **kwargs):
obs = super().render(*args, **kwargs)
self.window.set_caption(self.dialogue, [
"Gandalf:",
"Jack:",
"John:",
"Where is the exit",
"Open sesame",
])
return obs
class GoToDoorTalkHardSesame8x8Env(GoToDoorTalkHardSesameEnv):
def __init__(self):
super().__init__(size=8)
class GoToDoorTalkHardSesame6x6Env(GoToDoorTalkHardSesameEnv):
def __init__(self):
super().__init__(size=6)
# hear yourself
class GoToDoorTalkHardSesameHY8x8Env(GoToDoorTalkHardSesameEnv):
def __init__(self):
super().__init__(size=8, hear_yourself=True)
class GoToDoorTalkHardSesameHY6x6Env(GoToDoorTalkHardSesameEnv):
def __init__(self):
super().__init__(size=6, hear_yourself=True)
class GoToDoorTalkHardSesameHY5x5Env(GoToDoorTalkHardSesameEnv):
def __init__(self):
super().__init__(size=5, hear_yourself=True)
register(
id='MiniGrid-GoToDoorTalkHardSesame-5x5-v0',
entry_point='gym_minigrid.envs:GoToDoorTalkHardSesameEnv'
)
register(
id='MiniGrid-GoToDoorTalkHardSesame-6x6-v0',
entry_point='gym_minigrid.envs:GoToDoorTalkHardSesame6x6Env'
)
register(
id='MiniGrid-GoToDoorTalkHardSesame-8x8-v0',
entry_point='gym_minigrid.envs:GoToDoorTalkHardSesame8x8Env'
)
register(
id='MiniGrid-GoToDoorTalkHardSesameHY-5x5-v0',
entry_point='gym_minigrid.envs:GoToDoorTalkHardSesameHY5x5Env'
)
register(
id='MiniGrid-GoToDoorTalkHardSesameHY-6x6-v0',
entry_point='gym_minigrid.envs:GoToDoorTalkHardSesameHY6x6Env'
)
register(
id='MiniGrid-GoToDoorTalkHardSesameHY-8x8-v0',
entry_point='gym_minigrid.envs:GoToDoorTalkHardSesameHY8x8Env'
)
|