File size: 6,412 Bytes
be5548b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
from gym_minigrid.minigrid import *
from gym_minigrid.register import register
 


class TalkHardSesameGrammar(object):

    templates = ["Where is", "Open"]
    things = ["sesame", "the exit"]

    grammar_action_space = spaces.MultiDiscrete([len(templates), len(things)])

    @classmethod
    def construct_utterance(cls, action):
        return cls.templates[int(action[0])] + " " + cls.things[int(action[1])] + " "


class GoToDoorTalkHardSesameEnv(MultiModalMiniGridEnv):
    """
    Environment in which the agent is instructed to go to a given object
    named using an English text string
    """

    def __init__(
        self,
        size=5,
        hear_yourself=False,
    ):
        assert size >= 5

        super().__init__(
            grid_size=size,
            max_steps=5*size**2,
            # Set this to True for maximum speed
            see_through_walls=True,
            actions=MiniGridEnv.Actions,
            action_space=spaces.MultiDiscrete([
                len(MiniGridEnv.Actions),
                *TalkHardSesameGrammar.grammar_action_space.nvec
            ])
        )
        self.hear_yourself = hear_yourself
        
        self.empty_symbol = "NA \n"

    def _gen_grid(self, width, height):
        # Create the grid
        self.grid = Grid(width, height)

        # Randomly vary the room width and height
        width = self._rand_int(5, width+1)
        height = self._rand_int(5, height+1)

        # Generate the surrounding walls
        self.grid.wall_rect(0, 0, width, height)

        # Generate the 4 doors at random positions
        self.doorPos = []
        self.doorPos.append((self._rand_int(2, width-2), 0))
        self.doorPos.append((self._rand_int(2, width-2), height-1))
        self.doorPos.append((0, self._rand_int(2, height-2)))
        self.doorPos.append((width-1, self._rand_int(2, height-2)))

        # Generate the door colors
        doorColors = []
        while len(doorColors) < len(self.doorPos):
            color = self._rand_elem(COLOR_NAMES)
            if color in doorColors:
                continue
            doorColors.append(color)

        # Place the doors in the grid
        for idx, pos in enumerate(self.doorPos):
            color = doorColors[idx]
            self.grid.set(*pos, Door(color))

        # Randomize the agent start position and orientation
        self.place_agent(size=(width, height))

        # Select a random target door
        doorIdx = self._rand_int(0, len(self.doorPos))
        self.target_pos = self.doorPos[doorIdx]
        self.target_color = doorColors[doorIdx]

        # Generate the mission string
        self.mission = 'go to the %s door' % self.target_color

        # Dummy beginning string
        self.beginning_string = "This is what you hear. \n"
        self.utterance = self.beginning_string

        # utterance appended at the end of each step
        self.utterance_history = ""

    def step(self, action):
        p_action = action[0]
        utterance_action = action[1:]

        # assert all nan or neither nan
        assert len(set(np.isnan(utterance_action))) == 1

        speak_flag = not all(np.isnan(utterance_action))

        obs, reward, done, info = super().step(p_action)

        if speak_flag:
            utterance = TalkHardSesameGrammar.construct_utterance(utterance_action)

            if self.hear_yourself:
                self.utterance += "YOU: {} \n".format(utterance)

            if utterance == TalkHardSesameGrammar.construct_utterance([0, 1]):
                reply = self.mission
                NPC_name = "Wizard"
                self.utterance += "{}: {} \n".format(NPC_name, reply)  # dummy reply gives mission

            elif utterance == TalkHardSesameGrammar.construct_utterance([1, 0]):
                ax, ay = self.agent_pos
                tx, ty = self.target_pos

                if (ax == tx and abs(ay - ty) == 1) or (ay == ty and abs(ax - tx) == 1):
                    reward = self._reward()
                    
                for dx, dy in self.doorPos:
                    if (ax == dx and abs(ay - dy) == 1) or (ay == dy and abs(ax - dx) == 1):
                        # agent has chosen some door episode, regardless of if the door is correct the episode is over
                        done = True

        # Don't let the agent open any of the doors
        if p_action == self.actions.toggle:
            done = True
            
        # fill observation with text
        self.append_existing_utterance_to_history()
        obs = self.add_utterance_to_observation(obs)
        self.reset_utterance()

        return obs, reward, done, info

    def render(self, *args, **kwargs):
        obs = super().render(*args, **kwargs)
        self.window.set_caption(self.dialogue, [
            "Gandalf:",
            "Jack:",
            "John:",
            "Where is the exit",
            "Open sesame",
        ])
        return obs


class GoToDoorTalkHardSesame8x8Env(GoToDoorTalkHardSesameEnv):
    def __init__(self):
        super().__init__(size=8)


class GoToDoorTalkHardSesame6x6Env(GoToDoorTalkHardSesameEnv):
    def __init__(self):
        super().__init__(size=6)


# hear yourself
class GoToDoorTalkHardSesameHY8x8Env(GoToDoorTalkHardSesameEnv):
    def __init__(self):
        super().__init__(size=8, hear_yourself=True)


class GoToDoorTalkHardSesameHY6x6Env(GoToDoorTalkHardSesameEnv):
    def __init__(self):
        super().__init__(size=6, hear_yourself=True)


class GoToDoorTalkHardSesameHY5x5Env(GoToDoorTalkHardSesameEnv):
    def __init__(self):
        super().__init__(size=5, hear_yourself=True)

register(
    id='MiniGrid-GoToDoorTalkHardSesame-5x5-v0',
    entry_point='gym_minigrid.envs:GoToDoorTalkHardSesameEnv'
)

register(
    id='MiniGrid-GoToDoorTalkHardSesame-6x6-v0',
    entry_point='gym_minigrid.envs:GoToDoorTalkHardSesame6x6Env'
)

register(
    id='MiniGrid-GoToDoorTalkHardSesame-8x8-v0',
    entry_point='gym_minigrid.envs:GoToDoorTalkHardSesame8x8Env'
)
register(
    id='MiniGrid-GoToDoorTalkHardSesameHY-5x5-v0',
    entry_point='gym_minigrid.envs:GoToDoorTalkHardSesameHY5x5Env'
)

register(
    id='MiniGrid-GoToDoorTalkHardSesameHY-6x6-v0',
    entry_point='gym_minigrid.envs:GoToDoorTalkHardSesameHY6x6Env'
)

register(
    id='MiniGrid-GoToDoorTalkHardSesameHY-8x8-v0',
    entry_point='gym_minigrid.envs:GoToDoorTalkHardSesameHY8x8Env'
)