Spaces:
Sleeping
Sleeping
File size: 13,298 Bytes
be5548b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import argparse
import os
import matplotlib.pyplot as plt
import json
import time
import numpy as np
import torch
from pathlib import Path
from utils.babyai_utils.baby_agent import load_agent
from utils.storage import get_status
from utils.env import make_env
from utils.other import seed
from utils.storage import get_model_dir
from models import *
from utils.env import env_args_str_to_dict
import gym
from termcolor import cprint
os.makedirs("./evaluation", exist_ok=True)
start = time.time()
# Parse arguments
parser = argparse.ArgumentParser()
parser.add_argument("--test-set-seed", type=int, default=0,
help="random seed (default: 0)")
parser.add_argument("--random-agent", action="store_true", default=False,
help="random actions")
parser.add_argument("--quiet", "-q", action="store_true", default=False,
help="quiet")
parser.add_argument("--eval-env", type=str, default=None,
help="env to evaluate on")
parser.add_argument("--model-to-evaluate", type=str, default=None,
help="model to evaluate")
parser.add_argument("--model-label", type=str, default=None,
help="model to evaluate")
parser.add_argument("--max-steps", type=int, default=None,
help="max num of steps")
parser.add_argument("--argmax", action="store_true", default=False,
help="select the action with highest probability (default: False)")
parser.add_argument("--episodes", type=int, default=1000,
help="number of episodes to test")
parser.add_argument("--test-p", type=float, default=0.05,
help="p value")
parser.add_argument("--n-seeds", type=int, default=8,
help="number of episodes to test")
parser.add_argument("--subsample-step", type=int, default=1,
help="subsample step")
parser.add_argument("--start-step", type=int, default=1,
help="at which step to start the curves")
parser.add_argument("--env_args", nargs='*', default=None)
args = parser.parse_args()
# Set seed for all randomness sources
seed(args.test_set_seed)
assert args.test_set_seed == 1 # turn on for testing
# assert not args.argmax
# assert args.num_frames == 28000000
# assert args.episodes == 1000
test_p = args.test_p
n_seeds = args.n_seeds
assert n_seeds in [16, 8, 4]
cprint("n seeds: {}".format(n_seeds), "red")
subsample_step = args.subsample_step
start_step = args.start_step
# Set device
def qprint(*a, **kwargs):
if not args.quiet:
print(*a, **kwargs)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
qprint(f"Device: {device}\n")
# what to load
if args.model_to_evaluate is None:
models_to_evaluate = [
"19-05_500K_HELP_env_MiniGrid-Exiter-8x8-v0_multi-modal-babyai11-agent_arch_original_endpool_res_custom-ppo-2"
]
label_parser_dict = {
"19-05_500K_HELP_env_MiniGrid-Exiter-8x8-v0_multi-modal-babyai11-agent_arch_original_endpool_res_custom-ppo-2": "Exiter_EB",
}
else:
model_name = args.model_to_evaluate.replace("./storage/", "").replace("storage/", "")
models_to_evaluate = [
model_name
]
if args.model_label:
label_parser_dict = {
model_name: args.model_label,
}
else:
label_parser_dict = {
model_name: model_name,
}
qprint("evaluating models: ", models_to_evaluate)
# how do to stat tests
compare = {
# "MH-BabyAI-ExpBonus": "Abl-MH-BabyAI-ExpBonus",
}
COLORS = ["red", "blue", "green", "black", "purpule", "brown", "orange", "gray"]
label_color_dict = {l: c for l, c in zip(label_parser_dict.values(), COLORS)}
test_set_check_path = Path("test_set_check_{}_nep_{}.json".format(args.test_set_seed, args.episodes))
def calc_perf_for_seed(i, model_name, seed, argmax, episodes, random_agent=False, num_frames=None):
qprint("seed {}".format(i))
model = Path(model_name) / str(i)
model_dir = get_model_dir(model)
if test_set_check_path.exists():
with open(test_set_check_path, "r") as f:
check_loaded = json.load(f)
qprint("check loaded")
else:
qprint("check not loaded")
check_loaded = None
# Load environment
with open(model_dir+"/config.json") as f:
conf = json.load(f)
if args.eval_env is None:
qprint("evaluating on the original env")
env_name = conf["env"]
else:
qprint("evaluating on a different env")
env_name = args.eval_env
env = gym.make(env_name, **env_args_str_to_dict(args.env_args))
qprint("Environment loaded\n")
# load agent
agent = load_agent(env, model_dir, argmax)
status = get_status(model_dir)
qprint("Agent loaded at {} steps.".format(status.get("num_frames", -1)))
check = {}
seed_rewards = []
seed_sr = []
for episode in range(episodes):
qprint("[{}/{}]: ".format(episode, episodes), end="", flush=True)
obs = env.reset()
# check envs are the same during seeds
if episode in check:
assert check[episode] == int(obs['image'].sum())
else:
check[episode] = int(obs['image'].sum())
if check_loaded is not None:
assert check[episode] == int(obs['image'].sum())
i = 0
tot_reward = 0
while True:
i+=1
if random_agent:
action = agent.get_random_action(obs)
else:
action = agent.get_action(obs)
obs, reward, done, info = env.step(action)
if reward:
qprint("*", end="", flush=True)
else:
qprint(".", end="", flush=True)
agent.analyze_feedback(reward, done)
tot_reward += reward
if done:
seed_rewards.append(tot_reward)
seed_sr.append(info["success"])
break
if args.max_steps is not None:
if i > args.max_steps:
seed_rewards.append(tot_reward)
seed_sr.append(info["success"])
break
qprint()
seed_rewards = np.array(seed_rewards)
seed_success_rates = np.array(seed_sr)
if not test_set_check_path.exists():
with open(test_set_check_path, "w") as f:
json.dump(check, f)
qprint("check saved")
qprint("seed success rate:", seed_success_rates.mean())
qprint("seed reward:", seed_rewards.mean())
return seed_rewards.mean(), seed_success_rates.mean()
def get_available_steps(model):
model_dir = Path(get_model_dir(model))
per_seed_available_steps = {}
for seed_dir in model_dir.glob("*"):
per_seed_available_steps[seed_dir] = sorted([
int(str(p.with_suffix("")).split("status_")[-1])
for p in seed_dir.glob("status_*")
])
num_steps = min([len(steps) for steps in per_seed_available_steps.values()])
steps = list(per_seed_available_steps.values())[0][:num_steps]
for available_steps in per_seed_available_steps.values():
s_steps = available_steps[:num_steps]
assert steps == s_steps
return steps
def plot_with_shade(subplot_nb, ax, x, y, err, color, shade_color, label,
legend=False, leg_size=30, leg_loc='best', title=None,
ylim=[0, 100], xlim=[0, 40], leg_args={}, leg_linewidth=8.0, linewidth=7.0, ticksize=30,
zorder=None, xlabel='perf', ylabel='env steps', smooth_factor=1000):
# plt.rcParams.update({'font.size': 15})
ax.locator_params(axis='x', nbins=6)
ax.locator_params(axis='y', nbins=5)
ax.tick_params(axis='both', which='major', labelsize=ticksize)
# smoothing
def smooth(x_, n=50):
return np.array([x_[max(i - n, 0):i + 1].mean() for i in range(len(x_))])
if smooth_factor > 0:
y = smooth(y, n=smooth_factor)
err = smooth(err, n=smooth_factor)
ax.plot(x, y, color=color, label=label, linewidth=linewidth, zorder=zorder)
ax.fill_between(x, y - err, y + err, color=shade_color, alpha=0.2)
if legend:
leg = ax.legend(loc=leg_loc, fontsize=leg_size, **leg_args) # 34
for legobj in leg.legendHandles:
legobj.set_linewidth(leg_linewidth)
ax.set_xlabel(xlabel, fontsize=30)
if subplot_nb == 0:
ax.set_ylabel(ylabel, fontsize=30)
ax.set_xlim(xmin=xlim[0], xmax=xlim[1])
ax.set_ylim(bottom=ylim[0], top=ylim[1])
if title:
ax.set_title(title, fontsize=22)
def label_parser(label, label_parser_dict):
if sum([1 for k, v in label_parser_dict.items() if k in label]) != 1:
qprint("ERROR")
qprint(label)
exit()
for k, v in label_parser_dict.items():
if k in label: return v
return label
f, ax = plt.subplots(1, 1, figsize=(10.0, 6.0))
ax = [ax]
performances = {}
per_seed_performances = {}
stds = {}
label_parser_dict_reverse = {v: k for k, v in label_parser_dict.items()}
assert len(label_parser_dict_reverse) == len(label_parser_dict)
label_to_model = {}
# evaluate and draw curves
for model in models_to_evaluate:
label = label_parser(model, label_parser_dict)
label_to_model[label] = model
color = label_color_dict[label]
performances[label] = []
per_seed_performances[label] = []
stds[label] = []
final_perf = True
if final_perf:
results = []
for s in range(n_seeds):
results.append(calc_perf_for_seed(
s,
model_name=model,
num_frames=None,
seed=args.test_set_seed,
argmax=args.argmax,
episodes=args.episodes,
))
rewards, success_rates = zip(*results)
# dump per seed performance
np.save("./evaluation/{}".format(label), success_rates)
rewards = np.array(rewards)
success_rates = np.array(success_rates)
success_rate_mean = success_rates.mean()
succes_rate_std = success_rates.std()
label = label_parser(str(model), label_parser_dict)
cprint("{}: {} +- std {}".format(label, success_rate_mean, succes_rate_std), "red")
else:
steps = get_available_steps(model)
steps = steps[::subsample_step]
steps = [s for s in steps if s > start_step]
qprint("steps:", steps)
for step in steps:
results = []
for s in range(n_seeds):
results.append(calc_perf_for_seed(
s,
model_name=model,
num_frames=step,
seed=args.test_set_seed,
argmax=args.argmax,
episodes=args.episodes,
))
rewards, success_rates = zip(*results)
rewards = np.array(rewards)
success_rates = np.array(success_rates)
per_seed_performances[label].append(success_rates)
performances[label].append(success_rates.mean())
stds[label].append(success_rates.std())
means = np.array(performances[label])
err = np.array(stds[label])
label = label_parser(str(model), label_parser_dict)
max_steps = np.max(steps)
min_steps = np.min(steps)
min_y = 0.0
max_y = 1.0
ylabel = "performance"
smooth_factor = 0
plot_with_shade(0, ax[0], steps, means, err, color, color, label,
legend=True, xlim=[min_steps, max_steps], ylim=[min_y, max_y],
leg_size=20, xlabel="Env steps (millions)", ylabel=ylabel, linewidth=5.0, smooth_factor=smooth_factor)
assert len(label_to_model) == len(models_to_evaluate)
def get_compatible_steps(model1, model2, subsample_step):
steps_1 = get_available_steps(model1)[::subsample_step]
steps_2 = get_available_steps(model2)[::subsample_step]
min_steps = min(len(steps_1), len(steps_2))
steps_1 = steps_1[:min_steps]
steps_2 = steps_2[:min_steps]
assert steps_1 == steps_2
return steps_1
# # stat tests
# for k, v in compare.items():
# dist_1_steps = per_seed_performances[k]
# dist_2_steps = per_seed_performances[v]
#
# model_k = label_to_model[k]
# model_v = label_to_model[v]
# steps = get_compatible_steps(model_k, model_v, subsample_step)
# steps = [s for s in steps if s > start_step]
#
# for step, dist_1, dist_2 in zip(steps, dist_1_steps, dist_2_steps):
# assert len(dist_1) == n_seeds
# assert len(dist_2) == n_seeds
#
# p = stats.ttest_ind(
# dist_1,
# dist_2,
# equal_var=False
# ).pvalue
#
# if np.isnan(p):
# from IPython import embed; embed()
#
# if p < test_p:
# plt.scatter(step, 0.8, color=label_color_dict[k], s=50, marker="x")
#
# print("{} (m:{}) <---> {} (m:{}) = p: {} result: {}".format(
# k, np.mean(dist_1), v, np.mean(dist_2), p,
# "Distributions different(p={})".format(test_p) if p < test_p else "Distributions same(p={})".format(test_p)
# ))
# print()
#
# f.savefig('graphics/test.png')
# f.savefig('graphics/test.svg')
|