File size: 13,298 Bytes
be5548b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import argparse
import os
import matplotlib.pyplot as plt
import json
import time
import numpy as np
import torch
from pathlib import Path

from utils.babyai_utils.baby_agent import load_agent
from utils.storage import get_status
from utils.env import make_env
from utils.other import seed
from utils.storage import get_model_dir
from models import *
from utils.env import env_args_str_to_dict
import gym
from termcolor import cprint

os.makedirs("./evaluation", exist_ok=True)

start = time.time()

# Parse arguments

parser = argparse.ArgumentParser()
parser.add_argument("--test-set-seed", type=int, default=0,
                    help="random seed (default: 0)")
parser.add_argument("--random-agent", action="store_true", default=False,
                    help="random actions")
parser.add_argument("--quiet", "-q", action="store_true", default=False,
                    help="quiet")
parser.add_argument("--eval-env", type=str, default=None,
                    help="env to evaluate on")
parser.add_argument("--model-to-evaluate", type=str, default=None,
                    help="model to evaluate")
parser.add_argument("--model-label", type=str, default=None,
                    help="model to evaluate")
parser.add_argument("--max-steps", type=int, default=None,
                    help="max num of steps")
parser.add_argument("--argmax", action="store_true", default=False,
                    help="select the action with highest probability (default: False)")
parser.add_argument("--episodes", type=int, default=1000,
                    help="number of episodes to test")
parser.add_argument("--test-p", type=float, default=0.05,
                    help="p value")
parser.add_argument("--n-seeds", type=int, default=8,
                    help="number of episodes to test")
parser.add_argument("--subsample-step", type=int, default=1,
                    help="subsample step")
parser.add_argument("--start-step", type=int, default=1,
                    help="at which step to start the curves")
parser.add_argument("--env_args", nargs='*', default=None)

args = parser.parse_args()

# Set seed for all randomness sources

seed(args.test_set_seed)

assert args.test_set_seed == 1 # turn on for testing
# assert not args.argmax

# assert args.num_frames == 28000000
# assert args.episodes == 1000

test_p = args.test_p
n_seeds = args.n_seeds
assert n_seeds in [16, 8, 4]
cprint("n seeds: {}".format(n_seeds), "red")
subsample_step = args.subsample_step
start_step = args.start_step

# Set device
def qprint(*a, **kwargs):
    if not args.quiet:
        print(*a, **kwargs)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
qprint(f"Device: {device}\n")

# what to load
if args.model_to_evaluate is None:
    models_to_evaluate = [
        "19-05_500K_HELP_env_MiniGrid-Exiter-8x8-v0_multi-modal-babyai11-agent_arch_original_endpool_res_custom-ppo-2"
    ]
    label_parser_dict = {
        "19-05_500K_HELP_env_MiniGrid-Exiter-8x8-v0_multi-modal-babyai11-agent_arch_original_endpool_res_custom-ppo-2": "Exiter_EB",
    }
else:
    model_name = args.model_to_evaluate.replace("./storage/", "").replace("storage/", "")
    models_to_evaluate = [
        model_name
    ]
    if args.model_label:
        label_parser_dict = {
            model_name: args.model_label,
        }
    else:
        label_parser_dict = {
            model_name: model_name,
        }
    qprint("evaluating models: ", models_to_evaluate)


# how do to stat tests
compare = {
    # "MH-BabyAI-ExpBonus": "Abl-MH-BabyAI-ExpBonus",
}

COLORS = ["red", "blue", "green", "black", "purpule", "brown", "orange", "gray"]
label_color_dict = {l: c for l, c in zip(label_parser_dict.values(), COLORS)}


test_set_check_path = Path("test_set_check_{}_nep_{}.json".format(args.test_set_seed, args.episodes))

def calc_perf_for_seed(i, model_name, seed, argmax, episodes, random_agent=False, num_frames=None):
    qprint("seed {}".format(i))
    model = Path(model_name) / str(i)
    model_dir = get_model_dir(model)

    if test_set_check_path.exists():
        with open(test_set_check_path, "r") as f:
            check_loaded = json.load(f)
        qprint("check loaded")
    else:
        qprint("check not loaded")
        check_loaded = None

    # Load environment
    with open(model_dir+"/config.json") as f:
        conf = json.load(f)

    if args.eval_env is None:
        qprint("evaluating on the original env")
        env_name = conf["env"]
    else:
        qprint("evaluating on a different env")
        env_name = args.eval_env

    env = gym.make(env_name, **env_args_str_to_dict(args.env_args))
    qprint("Environment loaded\n")

    # load agent
    agent = load_agent(env, model_dir, argmax)
    status = get_status(model_dir)
    qprint("Agent loaded at {} steps.".format(status.get("num_frames", -1)))

    check = {}

    seed_rewards = []
    seed_sr = []
    for episode in range(episodes):
        qprint("[{}/{}]: ".format(episode, episodes), end="", flush=True)

        obs = env.reset()

        # check envs are the same during seeds
        if episode in check:
            assert check[episode] == int(obs['image'].sum())
        else:
            check[episode] = int(obs['image'].sum())

        if check_loaded is not None:
            assert check[episode] == int(obs['image'].sum())
        i = 0
        tot_reward = 0
        while True:
            i+=1
            if random_agent:
                action = agent.get_random_action(obs)
            else:
                action = agent.get_action(obs)

            obs, reward, done, info = env.step(action)
            if reward:
                qprint("*", end="", flush=True)
            else:
                qprint(".", end="", flush=True)

            agent.analyze_feedback(reward, done)

            tot_reward += reward

            if done:
                seed_rewards.append(tot_reward)
                seed_sr.append(info["success"])
                break

            if args.max_steps is not None:
                if i > args.max_steps:
                    seed_rewards.append(tot_reward)
                    seed_sr.append(info["success"])
                    break

        qprint()

    seed_rewards = np.array(seed_rewards)
    seed_success_rates = np.array(seed_sr)

    if not test_set_check_path.exists():
        with open(test_set_check_path, "w") as f:
            json.dump(check, f)
            qprint("check saved")

    qprint("seed success rate:", seed_success_rates.mean())
    qprint("seed reward:", seed_rewards.mean())

    return seed_rewards.mean(), seed_success_rates.mean()


def get_available_steps(model):
    model_dir = Path(get_model_dir(model))
    per_seed_available_steps = {}
    for seed_dir in model_dir.glob("*"):
        per_seed_available_steps[seed_dir] = sorted([
           int(str(p.with_suffix("")).split("status_")[-1])
           for p in seed_dir.glob("status_*")
        ])

    num_steps = min([len(steps) for steps in per_seed_available_steps.values()])

    steps = list(per_seed_available_steps.values())[0][:num_steps]

    for available_steps in per_seed_available_steps.values():
        s_steps = available_steps[:num_steps]
        assert steps == s_steps

    return steps

def plot_with_shade(subplot_nb, ax, x, y, err, color, shade_color, label,
                    legend=False, leg_size=30, leg_loc='best', title=None,
                    ylim=[0, 100], xlim=[0, 40], leg_args={}, leg_linewidth=8.0, linewidth=7.0, ticksize=30,
                    zorder=None, xlabel='perf', ylabel='env steps', smooth_factor=1000):
    # plt.rcParams.update({'font.size': 15})
    ax.locator_params(axis='x', nbins=6)
    ax.locator_params(axis='y', nbins=5)
    ax.tick_params(axis='both', which='major', labelsize=ticksize)

    # smoothing
    def smooth(x_, n=50):
        return np.array([x_[max(i - n, 0):i + 1].mean() for i in range(len(x_))])

    if smooth_factor > 0:
        y = smooth(y, n=smooth_factor)
        err = smooth(err, n=smooth_factor)

    ax.plot(x, y, color=color, label=label, linewidth=linewidth, zorder=zorder)
    ax.fill_between(x, y - err, y + err, color=shade_color, alpha=0.2)
    if legend:
        leg = ax.legend(loc=leg_loc, fontsize=leg_size, **leg_args)  # 34
        for legobj in leg.legendHandles:
            legobj.set_linewidth(leg_linewidth)
    ax.set_xlabel(xlabel, fontsize=30)
    if subplot_nb == 0:
        ax.set_ylabel(ylabel, fontsize=30)
    ax.set_xlim(xmin=xlim[0], xmax=xlim[1])
    ax.set_ylim(bottom=ylim[0], top=ylim[1])
    if title:
        ax.set_title(title, fontsize=22)


def label_parser(label, label_parser_dict):
    if sum([1 for k, v in label_parser_dict.items() if k in label]) != 1:
        qprint("ERROR")
        qprint(label)
        exit()

    for k, v in label_parser_dict.items():
        if k in label: return v

    return label


f, ax = plt.subplots(1, 1, figsize=(10.0, 6.0))
ax = [ax]

performances = {}
per_seed_performances = {}
stds = {}


label_parser_dict_reverse = {v: k for k, v in label_parser_dict.items()}
assert len(label_parser_dict_reverse) == len(label_parser_dict)

label_to_model = {}
# evaluate and draw curves
for model in models_to_evaluate:
    label = label_parser(model, label_parser_dict)
    label_to_model[label] = model

    color = label_color_dict[label]
    performances[label] = []
    per_seed_performances[label] = []
    stds[label] = []

    final_perf = True

    if final_perf:

        results = []
        for s in range(n_seeds):
            results.append(calc_perf_for_seed(
                s,
                model_name=model,
                num_frames=None,
                seed=args.test_set_seed,
                argmax=args.argmax,
                episodes=args.episodes,
            ))
        rewards, success_rates = zip(*results)
        # dump per seed performance
        np.save("./evaluation/{}".format(label), success_rates)
        rewards = np.array(rewards)
        success_rates = np.array(success_rates)
        success_rate_mean = success_rates.mean()
        succes_rate_std = success_rates.std()

        label = label_parser(str(model), label_parser_dict)
        cprint("{}: {} +- std {}".format(label, success_rate_mean, succes_rate_std), "red")

    else:
        steps = get_available_steps(model)
        steps = steps[::subsample_step]
        steps = [s for s in steps if s > start_step]
        qprint("steps:", steps)

        for step in steps:
            results = []
            for s in range(n_seeds):
                results.append(calc_perf_for_seed(
                    s,
                    model_name=model,
                    num_frames=step,
                    seed=args.test_set_seed,
                    argmax=args.argmax,
                    episodes=args.episodes,
                ))

            rewards, success_rates = zip(*results)
            rewards = np.array(rewards)
            success_rates = np.array(success_rates)
            per_seed_performances[label].append(success_rates)
            performances[label].append(success_rates.mean())
            stds[label].append(success_rates.std())

        means = np.array(performances[label])
        err = np.array(stds[label])
        label = label_parser(str(model), label_parser_dict)
        max_steps = np.max(steps)
        min_steps = np.min(steps)
        min_y = 0.0
        max_y = 1.0
        ylabel = "performance"
        smooth_factor = 0

        plot_with_shade(0, ax[0], steps, means, err, color, color, label,
                        legend=True, xlim=[min_steps, max_steps], ylim=[min_y, max_y],
                        leg_size=20, xlabel="Env steps (millions)", ylabel=ylabel, linewidth=5.0, smooth_factor=smooth_factor)

assert len(label_to_model) == len(models_to_evaluate)


def get_compatible_steps(model1, model2, subsample_step):
    steps_1 = get_available_steps(model1)[::subsample_step]
    steps_2 = get_available_steps(model2)[::subsample_step]

    min_steps = min(len(steps_1), len(steps_2))
    steps_1 = steps_1[:min_steps]
    steps_2 = steps_2[:min_steps]
    assert steps_1 == steps_2

    return steps_1


# # stat tests
# for k, v in compare.items():
#     dist_1_steps = per_seed_performances[k]
#     dist_2_steps = per_seed_performances[v]
#
#     model_k = label_to_model[k]
#     model_v = label_to_model[v]
#     steps = get_compatible_steps(model_k, model_v, subsample_step)
#     steps = [s for s in steps if s > start_step]
#
#     for step, dist_1, dist_2 in zip(steps, dist_1_steps, dist_2_steps):
#         assert len(dist_1) == n_seeds
#         assert len(dist_2) == n_seeds
#
#         p = stats.ttest_ind(
#             dist_1,
#             dist_2,
#             equal_var=False
#         ).pvalue
#
#         if np.isnan(p):
#             from IPython import embed; embed()
#
#         if p < test_p:
#             plt.scatter(step, 0.8, color=label_color_dict[k], s=50, marker="x")
#
#         print("{} (m:{}) <---> {} (m:{}) = p: {}  result: {}".format(
#             k, np.mean(dist_1), v, np.mean(dist_2), p,
#             "Distributions different(p={})".format(test_p) if p < test_p else "Distributions same(p={})".format(test_p)
#         ))
#         print()
#
# f.savefig('graphics/test.png')
# f.savefig('graphics/test.svg')