File size: 9,359 Bytes
11bd154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
from gym_minigrid.minigrid import COLOR_TO_IDX, OBJECT_TO_IDX

def generate_text_obs(obs, info):

    text_observation = obs_to_text(info)

    llm_prompt = "Obs : "
    llm_prompt += "".join(text_observation)

    # add utterances
    if obs["utterance_history"] != "Conversation: \n":
        utt_hist = obs['utterance_history']
        utt_hist = utt_hist.replace("Conversation: \n","")
        llm_prompt += utt_hist

    return llm_prompt

def obs_to_text(info):
    image, vis_mask = info["image"], info["vis_mask"]
    carrying = info["carrying"]
    agent_pos_vx, agent_pos_vy = info["agent_pos_vx"], info["agent_pos_vy"]
    npc_actions_dict = info["npc_actions_dict"]

    # (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color], state)
    # State, 0: open, 1: closed, 2: locked
    IDX_TO_COLOR = dict(zip(COLOR_TO_IDX.values(), COLOR_TO_IDX.keys()))
    IDX_TO_OBJECT = dict(zip(OBJECT_TO_IDX.values(), OBJECT_TO_IDX.keys()))

    list_textual_descriptions = []

    if carrying is not None:
        list_textual_descriptions.append("You carry a {} {}".format(carrying.color, carrying.type))

    # agent_pos_vx, agent_pos_vy = self.get_view_coords(self.agent_pos[0], self.agent_pos[1])

    view_field_dictionary = dict()

    for i in range(image.shape[0]):
        for j in range(image.shape[1]):
            if image[i][j][0] != 0 and image[i][j][0] != 1 and image[i][j][0] != 2:
                if i not in view_field_dictionary.keys():
                    view_field_dictionary[i] = dict()
                    view_field_dictionary[i][j] = image[i][j]
                else:
                    view_field_dictionary[i][j] = image[i][j]

    # Find the wall if any
    #  We describe a wall only if there is no objects between the agent and the wall in straight line

    # Find wall in front
    add_wall_descr = False
    if add_wall_descr:
        j = agent_pos_vy - 1
        object_seen = False
        while j >= 0 and not object_seen:
            if image[agent_pos_vx][j][0] != 0 and image[agent_pos_vx][j][0] != 1:
                if image[agent_pos_vx][j][0] == 2:
                    list_textual_descriptions.append(
                        f"A wall is {agent_pos_vy - j} steps in front of you. \n")  # forward
                    object_seen = True
                else:
                    object_seen = True
            j -= 1
        # Find wall left
        i = agent_pos_vx - 1
        object_seen = False
        while i >= 0 and not object_seen:
            if image[i][agent_pos_vy][0] != 0 and image[i][agent_pos_vy][0] != 1:
                if image[i][agent_pos_vy][0] == 2:
                    list_textual_descriptions.append(
                        f"A wall is {agent_pos_vx - i} steps to the left. \n")  # left
                    object_seen = True
                else:
                    object_seen = True
            i -= 1
        # Find wall right
        i = agent_pos_vx + 1
        object_seen = False
        while i < image.shape[0] and not object_seen:
            if image[i][agent_pos_vy][0] != 0 and image[i][agent_pos_vy][0] != 1:
                if image[i][agent_pos_vy][0] == 2:
                    list_textual_descriptions.append(
                        f"A wall is {i - agent_pos_vx} steps to the right. \n")  # right
                    object_seen = True
                else:
                    object_seen = True
            i += 1

    # list_textual_descriptions.append("You see the following objects: ")
    # returns the position of seen objects relative to you
    for i in view_field_dictionary.keys():
        for j in view_field_dictionary[i].keys():
            if i != agent_pos_vx or j != agent_pos_vy:
                object = view_field_dictionary[i][j]

                # # don't show npc
                # if IDX_TO_OBJECT[object[0]] == "npc":
                #     continue

                front_dist = agent_pos_vy - j
                left_right_dist = i - agent_pos_vx

                loc_descr = ""
                if front_dist == 1 and left_right_dist == 0:
                    loc_descr += "Right in front of you "

                elif left_right_dist == 1 and front_dist == 0:
                    loc_descr += "Just to the right of you"

                elif left_right_dist == -1 and front_dist == 0:
                    loc_descr += "Just to the left of you"

                else:
                    front_str = str(front_dist) + " steps in front of you " if front_dist > 0 else ""

                    loc_descr += front_str

                    suff = "s" if abs(left_right_dist) > 0 else ""
                    and_ = "and" if loc_descr != "" else ""

                    if left_right_dist < 0:
                        left_right_str = f"{and_} {-left_right_dist} step{suff} to the left"
                        loc_descr += left_right_str

                    elif left_right_dist > 0:
                        left_right_str = f"{and_} {left_right_dist} step{suff} to the right"
                        loc_descr += left_right_str

                    else:
                        left_right_str = ""
                        loc_descr += left_right_str

                loc_descr += f" there is a "

                obj_type = IDX_TO_OBJECT[object[0]]
                if obj_type == "npc":
                    IDX_TO_STATE = {0: 'friendly', 1: 'antagonistic'}

                    description = f"{IDX_TO_STATE[object[2]]} {IDX_TO_COLOR[object[1]]} peer. "

                    # gaze
                    gaze_dir = {
                        0: "towards you",
                        1: "to the left of you",
                        2: "in the same direction as you",
                        3: "to the right of you",
                    }
                    description += f"It is looking {gaze_dir[object[3]]}. "

                    # point
                    point_dir = {
                        0: "towards you",
                        1: "to the left of you",
                        2: "in the same direction as you",
                        3: "to the right of you",
                    }

                    if object[4] != 255:
                        description += f"It is pointing {point_dir[object[4]]}. "

                    # last action
                    last_action = {v: k for k, v in npc_actions_dict.items()}[object[5]]

                    last_action = {
                        "go_forward": "foward",
                        "rotate_left": "turn left",
                        "rotate_right": "turn right",
                        "toggle_action": "toggle",
                        "point_stop_point": "stop pointing",
                        "point_E": "",
                        "point_S": "",
                        "point_W": "",
                        "point_N": "",
                        "stop_point": "stop pointing",
                        "no_op": ""
                    }[last_action]

                    if last_action not in ["no_op", ""]:
                        description += f"It's last action is {last_action}. "

                elif obj_type in ["switch", "apple", "generatorplatform", "marble", "marbletee", "fence"]:
                    # todo: this assumes that Switch.no_light == True
                    description = f"{IDX_TO_COLOR[object[1]]} {IDX_TO_OBJECT[object[0]]} "
                    assert object[2:].mean() == 0

                elif obj_type == "lockablebox":
                    IDX_TO_STATE = {0: 'open', 1: 'closed', 2: 'locked'}
                    description = f"{IDX_TO_STATE[object[2]]} {IDX_TO_COLOR[object[1]]} {IDX_TO_OBJECT[object[0]]} "
                    assert object[3:].mean() == 0

                elif obj_type == "applegenerator":
                    IDX_TO_STATE = {1: 'square', 2: 'round'}
                    description = f"{IDX_TO_STATE[object[2]]} {IDX_TO_COLOR[object[1]]} {IDX_TO_OBJECT[object[0]]} "
                    assert object[3:].mean() == 0

                elif obj_type == "remotedoor":
                    IDX_TO_STATE = {0: 'open', 1: 'closed'}
                    description = f"{IDX_TO_STATE[object[2]]} {IDX_TO_COLOR[object[1]]} {IDX_TO_OBJECT[object[0]]} "
                    assert object[3:].mean() == 0

                elif obj_type == "door":
                    IDX_TO_STATE = {0: 'open', 1: 'closed', 2: 'locked'}
                    description = f"{IDX_TO_STATE[object[2]]} {IDX_TO_COLOR[object[1]]} {IDX_TO_OBJECT[object[0]]} "
                    assert object[3:].mean() == 0

                elif obj_type == "lever":
                    IDX_TO_STATE = {1: 'activated', 0: 'unactivated'}
                    if object[3] == 255:
                        countdown_txt = ""
                    else:
                        countdown_txt = f"with {object[3]} timesteps left. "

                    description = f"{IDX_TO_STATE[object[2]]} {IDX_TO_COLOR[object[1]]} {IDX_TO_OBJECT[object[0]]} {countdown_txt}"

                    assert object[4:].mean() == 0
                else:
                    raise ValueError(f"Undefined object type {obj_type}")

                full_destr = loc_descr + description + "\n"

                list_textual_descriptions.append(full_destr)

    if len(list_textual_descriptions) == 0:
        list_textual_descriptions.append("\n")

    return list_textual_descriptions