Spaces:
Sleeping
Sleeping
import math | |
import random | |
import hashlib | |
import gym | |
from enum import IntEnum | |
import numpy as np | |
from gym import error, spaces, utils | |
from gym.utils import seeding | |
from .rendering import * | |
from abc import ABC, abstractmethod | |
import warnings | |
import astar | |
import traceback | |
import warnings | |
from functools import wraps | |
SocialAINPCActionsDict = { | |
"go_forward": 0, | |
"rotate_left": 1, | |
"rotate_right": 2, | |
"toggle_action": 3, | |
"point_stop_point": 4, | |
"point_E": 5, | |
"point_S": 6, | |
"point_W": 7, | |
"point_N": 8, | |
"stop_point": 9, | |
"no_op": 10 | |
} | |
point_dir_encoding = { | |
"point_E": 0, | |
"point_S": 1, | |
"point_W": 2, | |
"point_N": 3, | |
} | |
def get_traceback(): | |
tb = traceback.extract_stack() | |
return "".join(traceback.format_list(tb)[:-1]) | |
# Size in pixels of a tile in the full-scale human view | |
TILE_PIXELS = 32 | |
# Map of color names to RGB values | |
COLORS = { | |
'red' : np.array([255, 0, 0]), | |
'green' : np.array([0, 255, 0]), | |
'blue' : np.array([0, 0, 255]), | |
'purple': np.array([112, 39, 195]), | |
'yellow': np.array([255, 255, 0]), | |
'grey' : np.array([100, 100, 100]), | |
'brown': np.array([82, 36, 19]) | |
} | |
COLOR_NAMES = sorted(list(COLORS.keys())) | |
# Used to map colors to integers | |
COLOR_TO_IDX = { | |
'red' : 0, | |
'green' : 1, | |
'blue' : 2, | |
'purple': 3, | |
'yellow': 4, | |
'grey' : 5, | |
'brown' : 6, | |
} | |
IDX_TO_COLOR = dict(zip(COLOR_TO_IDX.values(), COLOR_TO_IDX.keys())) | |
# Map of object type to integers | |
OBJECT_TO_IDX = { | |
'unseen' : 0, | |
'empty' : 1, | |
'wall' : 2, | |
'floor' : 3, | |
'door' : 4, | |
'key' : 5, | |
'ball' : 6, | |
'box' : 7, | |
'goal' : 8, | |
'lava' : 9, | |
'agent' : 10, | |
'npc' : 11, | |
'switch' : 12, | |
'lockablebox' : 13, | |
'apple' : 14, | |
'applegenerator' : 15, | |
'generatorplatform': 16, | |
'marble' : 17, | |
'marbletee' : 18, | |
'fence' : 19, | |
'remotedoor' : 20, | |
'lever' : 21, | |
} | |
IDX_TO_OBJECT = dict(zip(OBJECT_TO_IDX.values(), OBJECT_TO_IDX.keys())) | |
# Map of state names to integers | |
STATE_TO_IDX = { | |
'open' : 0, | |
'closed': 1, | |
'locked': 2, | |
} | |
# Map of agent direction indices to vectors | |
DIR_TO_VEC = [ | |
# Pointing right (positive X) | |
np.array((1, 0)), | |
# Down (positive Y) | |
np.array((0, 1)), | |
# Pointing left (negative X) | |
np.array((-1, 0)), | |
# Up (negative Y) | |
np.array((0, -1)), | |
] | |
class WorldObj: | |
""" | |
Base class for grid world objects | |
""" | |
def __init__(self, type, color): | |
assert type in OBJECT_TO_IDX, type | |
assert color in COLOR_TO_IDX, color | |
self.type = type | |
self.color = color | |
self.contains = None | |
# Initial position of the object | |
self.init_pos = None | |
# Current position of the object | |
self.cur_pos = np.array((0, 0)) | |
def can_overlap(self): | |
"""Can the agent overlap with this?""" | |
return False | |
def can_push(self): | |
"""Can the agent push the object?""" | |
return False | |
def can_pickup(self): | |
"""Can the agent pick this up?""" | |
return False | |
def can_contain(self): | |
"""Can this contain another object?""" | |
return False | |
def see_behind(self): | |
"""Can the agent see behind this object?""" | |
return True | |
def toggle(self, env, pos): | |
"""Method to trigger/toggle an action this object performs""" | |
return False | |
def encode(self, nb_dims=3, absolute_coordinates=False): | |
"""Encode the a description of this object as a nb_dims-tuple of integers""" | |
if absolute_coordinates: | |
core = (OBJECT_TO_IDX[self.type], *self.cur_pos, COLOR_TO_IDX[self.color]) | |
else: | |
core = (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color]) | |
return core + (0,) * (nb_dims - len(core)) | |
def cache(self, *args, **kwargs): | |
"""Used for cached rendering.""" | |
return self.encode(*args, **kwargs) | |
def decode(type_idx, color_idx, state): | |
"""Create an object from a 3-tuple state description""" | |
obj_type = IDX_TO_OBJECT[type_idx] | |
color = IDX_TO_COLOR[color_idx] | |
if obj_type == 'empty' or obj_type == 'unseen': | |
return None | |
if obj_type == 'wall': | |
v = Wall(color) | |
elif obj_type == 'floor': | |
v = Floor(color) | |
elif obj_type == 'ball': | |
v = Ball(color) | |
elif obj_type == 'marble': | |
v = Marble(color) | |
elif obj_type == 'apple': | |
eaten = state == 1 | |
v = Apple(color, eaten=eaten) | |
elif obj_type == 'apple_generator': | |
is_pressed = state == 2 | |
v = AppleGenerator(color, is_pressed=is_pressed) | |
elif obj_type == 'key': | |
v = Key(color) | |
elif obj_type == 'box': | |
v = Box(color) | |
elif obj_type == 'lockablebox': | |
is_locked = state == 2 | |
v = LockableBox(color, is_locked=is_locked) | |
elif obj_type == 'door': | |
# State, 0: open, 1: closed, 2: locked | |
is_open = state == 0 | |
is_locked = state == 2 | |
v = Door(color, is_open, is_locked) | |
elif obj_type == 'remotedoor': | |
# State, 0: open, 1: closed | |
is_open = state == 0 | |
v = RemoteDoor(color, is_open) | |
elif obj_type == 'goal': | |
v = Goal() | |
elif obj_type == 'lava': | |
v = Lava() | |
elif obj_type == 'fence': | |
v = Fence() | |
elif obj_type == 'switch': | |
v = Switch(color, is_on=state) | |
elif obj_type == 'lever': | |
v = Lever(color, is_on=state) | |
elif obj_type == 'npc': | |
warnings.warn("NPC's internal state cannot be decoded. Only the icon is shown.") | |
v = NPC(color) | |
v.npc_type=0 | |
else: | |
assert False, "unknown object type in decode '%s'" % obj_type | |
return v | |
def render(self, r): | |
"""Draw this object with the given renderer""" | |
raise NotImplementedError | |
class BlockableWorldObj(WorldObj): | |
def __init__(self, type, color, block_set): | |
super(BlockableWorldObj, self).__init__(type, color) | |
self.block_set = block_set | |
self.blocked = False | |
def can_push(self): | |
return True | |
def push(self, *args, **kwargs): | |
return self.block_block_set() | |
def toggle(self, *args, **kwargs): | |
return self.block_block_set() | |
def block_block_set(self): | |
"""A function that blocks the block set""" | |
if not self.blocked: | |
if self.block_set is not None: | |
# cprint("BLOCKED!", "red") | |
for e in self.block_set: | |
e.block() | |
return True | |
else: | |
return False | |
def block(self): | |
self.blocked = True | |
class Goal(WorldObj): | |
def __init__(self): | |
super().__init__('goal', 'green') | |
def can_overlap(self): | |
return True | |
def render(self, img): | |
fill_coords(img, point_in_rect(0, 1, 0, 1), COLORS[self.color]) | |
class Floor(WorldObj): | |
""" | |
Colored floor tile the agent can walk over | |
""" | |
def __init__(self, color='blue'): | |
super().__init__('floor', color) | |
def can_overlap(self): | |
return True | |
def render(self, img): | |
# Give the floor a pale color | |
color = COLORS[self.color] / 2 | |
fill_coords(img, point_in_rect(0.031, 1, 0.031, 1), color) | |
class Lava(WorldObj): | |
def __init__(self): | |
super().__init__('lava', 'red') | |
def can_overlap(self): | |
return True | |
def render(self, img): | |
c = (255, 128, 0) | |
# Background color | |
fill_coords(img, point_in_rect(0, 1, 0, 1), c) | |
# Little waves | |
for i in range(3): | |
ylo = 0.3 + 0.2 * i | |
yhi = 0.4 + 0.2 * i | |
fill_coords(img, point_in_line(0.1, ylo, 0.3, yhi, r=0.03), (0,0,0)) | |
fill_coords(img, point_in_line(0.3, yhi, 0.5, ylo, r=0.03), (0,0,0)) | |
fill_coords(img, point_in_line(0.5, ylo, 0.7, yhi, r=0.03), (0,0,0)) | |
fill_coords(img, point_in_line(0.7, yhi, 0.9, ylo, r=0.03), (0,0,0)) | |
class Fence(WorldObj): | |
""" | |
Same as Lava but can't overlap. | |
""" | |
def __init__(self): | |
super().__init__('fence', 'grey') | |
def can_overlap(self): | |
return False | |
def render(self, img): | |
c = COLORS[self.color] | |
# ugly fence | |
fill_coords(img, point_in_rect( | |
0.1, 0.9, 0.5, 0.9 | |
# (0.15, 0.9), | |
# (0.10, 0.5), | |
# (0.95, 0.9), | |
# (0.90, 0.5), | |
# (0.10, 0.9), | |
# (0.10, 0.5), | |
# (0.95, 0.9), | |
# (0.95, 0.5), | |
), c) | |
fill_coords(img, point_in_quadrangle( | |
# (0.15, 0.9), | |
# (0.10, 0.5), | |
# (0.95, 0.9), | |
# (0.90, 0.5), | |
(0.10, 0.9), | |
(0.10, 0.5), | |
(0.95, 0.9), | |
(0.95, 0.5), | |
), c) | |
return | |
# preety fence | |
fill_coords(img, point_in_quadrangle( | |
(0.15, 0.3125), | |
(0.15, 0.4125), | |
(0.85, 0.4875), | |
(0.85, 0.5875), | |
), c) | |
# h2 | |
fill_coords(img, point_in_quadrangle( | |
(0.15, 0.6125), | |
(0.15, 0.7125), | |
(0.85, 0.7875), | |
(0.85, 0.8875), | |
), c) | |
# vm | |
fill_coords(img, point_in_quadrangle( | |
(0.45, 0.2875), | |
(0.45, 0.8875), | |
(0.55, 0.3125), | |
(0.55, 0.9125), | |
), c) | |
fill_coords(img, point_in_triangle( | |
(0.45, 0.2875), | |
(0.55, 0.3125), | |
(0.5, 0.25), | |
), c) | |
# vl | |
fill_coords(img, point_in_quadrangle( | |
(0.25, 0.2375), | |
(0.25, 0.8375), | |
(0.35, 0.2625), | |
(0.35, 0.8625), | |
), c) | |
# vl | |
fill_coords(img, point_in_triangle( | |
(0.25, 0.2375), | |
(0.35, 0.2625), | |
(0.3, 0.2), | |
), c) | |
# vr | |
fill_coords(img, point_in_quadrangle( | |
(0.65, 0.3375), | |
(0.65, 0.9375), | |
(0.75, 0.3625), | |
(0.75, 0.9625), | |
), c) | |
fill_coords(img, point_in_triangle( | |
(0.65, 0.3375), | |
(0.75, 0.3625), | |
(0.7, 0.3), | |
), c) | |
class Wall(WorldObj): | |
def __init__(self, color='grey'): | |
super().__init__('wall', color) | |
def see_behind(self): | |
return False | |
def render(self, img): | |
fill_coords(img, point_in_rect(0, 1, 0, 1), COLORS[self.color]) | |
class Lever(BlockableWorldObj): | |
def __init__(self, color, object=None, is_on=False, block_set=None, active_steps=None): | |
super().__init__('lever', color, block_set) | |
self.is_on = is_on | |
self.object = object | |
self.active_steps = active_steps | |
self.countdown = None # countdown timer | |
self.was_activated = False | |
if self.block_set is not None: | |
if self.is_on: | |
raise ValueError("If using a block set, a Switch must be initialized as OFF") | |
def can_overlap(self): | |
"""The agent can only walk over this cell when the door is open""" | |
return False | |
def see_behind(self): | |
return True | |
def step(self): | |
if self.countdown is not None: | |
self.countdown = self.countdown - 1 | |
if self.countdown <= 0: | |
# if nothing is on the door, close the door and deactivate timer | |
self.toggle() | |
self.countdown = None | |
def toggle(self, env=None, pos=None): | |
if self.blocked: | |
return False | |
if self.was_activated and not self.is_on: | |
# cannot be activated twice | |
return False | |
self.is_on = not self.is_on | |
if self.is_on: | |
if self.active_steps is not None: | |
# activate countdown to shutdown | |
self.countdown = self.active_steps | |
self.was_activated = True | |
if self.object is not None: | |
# open object | |
self.object.open_close() | |
if self.is_on: | |
self.block_block_set() | |
return True | |
def block(self): | |
self.blocked = True | |
def encode(self, nb_dims=3, absolute_coordinates=False): | |
"""Encode the a description of this object as a 3-tuple of integers""" | |
# State, 0: off, 1: on | |
state = 1 if self.is_on else 0 | |
count = self.countdown if self.countdown is not None else 255 | |
if absolute_coordinates: | |
v = (OBJECT_TO_IDX[self.type], *self.cur_pos, COLOR_TO_IDX[self.color], state, count) | |
else: | |
v = (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color], state, count) | |
v += (0,) * (nb_dims-len(v)) | |
return v | |
def render(self, img): | |
c = COLORS[self.color] | |
black = (0, 0, 0) | |
# off_angle = -math.pi/3 | |
off_angle = -math.pi/2 | |
on_angle = -math.pi/8 | |
rotating_lever_shapes = [] | |
rotating_lever_shapes.append((point_in_rect(0.5, 0.9, 0.77, 0.83), c)) | |
rotating_lever_shapes.append((point_in_circle(0.9, 0.8, 0.1), c)) | |
rotating_lever_shapes.append((point_in_circle(0.5, 0.8, 0.08), c)) | |
if self.is_on: | |
if self.countdown is None: | |
angle = on_angle | |
else: | |
angle = (self.countdown/self.active_steps) * (on_angle-off_angle) + off_angle | |
else: | |
angle = off_angle | |
fill_coords(img, point_in_circle_clip(0.5, 0.8, 0.12, theta_end=-math.pi), c) | |
# fill_coords(img, point_in_circle_clip(0.5, 0.8, 0.08, theta_end=-math.pi), black) | |
rotating_lever_shapes = [(rotate_fn(v, cx=0.5, cy=0.8, theta=angle), col) for v, col in rotating_lever_shapes] | |
for v, col in rotating_lever_shapes: | |
fill_coords(img, v, col) | |
fill_coords(img, point_in_rect(0.2, 0.8, 0.78, 0.82), c) | |
fill_coords(img, point_in_circle(0.5, 0.8, 0.03), (0, 0, 0)) | |
class RemoteDoor(BlockableWorldObj): | |
"""Door that are unlocked by a lever""" | |
def __init__(self, color, is_open=False, block_set=None): | |
super().__init__('remotedoor', color, block_set) | |
self.is_open = is_open | |
def can_overlap(self): | |
"""The agent can only walk over this cell when the door is open""" | |
return self.is_open | |
def see_behind(self): | |
return self.is_open | |
# def toggle(self, env, pos=None): | |
# return False | |
def open_close(self): | |
# If the player has the right key to open the door | |
self.is_open = not self.is_open | |
return True | |
def encode(self, nb_dims=3, absolute_coordinates=False): | |
"""Encode the a description of this object as a 3-tuple of integers""" | |
# State, 0: open, 1: closed | |
state = 0 if self.is_open else 1 | |
if absolute_coordinates: | |
v = (OBJECT_TO_IDX[self.type], *self.cur_pos, COLOR_TO_IDX[self.color], state) | |
else: | |
v = (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color], state) | |
v += (0,) * (nb_dims-len(v)) | |
return v | |
def block(self): | |
self.blocked = True | |
def render(self, img): | |
c = COLORS[self.color] | |
if self.is_open: | |
fill_coords(img, point_in_rect(0.88, 1.00, 0.00, 1.00), c) | |
fill_coords(img, point_in_rect(0.92, 0.96, 0.04, 0.96), (0,0,0)) | |
else: | |
fill_coords(img, point_in_rect(0.00, 1.00, 0.00, 1.00), c) | |
fill_coords(img, point_in_rect(0.04, 0.96, 0.04, 0.96), (0,0,0)) | |
fill_coords(img, point_in_rect(0.08, 0.92, 0.08, 0.92), c) | |
fill_coords(img, point_in_rect(0.12, 0.88, 0.12, 0.88), (0,0,0)) | |
# wifi symbol | |
fill_coords(img, point_in_circle_clip(cx=0.5, cy=0.8, r=0.5, theta_start=-np.pi/3, theta_end=-2*np.pi/3), c) | |
fill_coords(img, point_in_circle_clip(cx=0.5, cy=0.8, r=0.45, theta_start=-np.pi/3, theta_end=-2*np.pi/3), (0,0,0)) | |
fill_coords(img, point_in_circle_clip(cx=0.5, cy=0.8, r=0.4, theta_start=-np.pi/3, theta_end=-2*np.pi/3), c) | |
fill_coords(img, point_in_circle_clip(cx=0.5, cy=0.8, r=0.35, theta_start=-np.pi/3, theta_end=-2*np.pi/3), (0,0,0)) | |
fill_coords(img, point_in_circle_clip(cx=0.5, cy=0.8, r=0.3, theta_start=-np.pi/3, theta_end=-2*np.pi/3), c) | |
fill_coords(img, point_in_circle_clip(cx=0.5, cy=0.8, r=0.25, theta_start=-np.pi/3, theta_end=-2*np.pi/3), (0,0,0)) | |
fill_coords(img, point_in_circle_clip(cx=0.5, cy=0.8, r=0.2, theta_start=-np.pi/3, theta_end=-2*np.pi/3), c) | |
fill_coords(img, point_in_circle_clip(cx=0.5, cy=0.8, r=0.15, theta_start=-np.pi/3, theta_end=-2*np.pi/3), (0,0,0)) | |
fill_coords(img, point_in_circle_clip(cx=0.5, cy=0.8, r=0.1, theta_start=-np.pi/3, theta_end=-2*np.pi/3), c) | |
return | |
class Door(BlockableWorldObj): | |
def __init__(self, color, is_open=False, is_locked=False, block_set=None): | |
super().__init__('door', color, block_set) | |
self.is_open = is_open | |
self.is_locked = is_locked | |
def can_overlap(self): | |
"""The agent can only walk over this cell when the door is open""" | |
return self.is_open | |
def see_behind(self): | |
return self.is_open | |
def toggle(self, env, pos=None): | |
if self.blocked: | |
return False | |
# If the player has the right key to open the door | |
if self.is_locked: | |
if isinstance(env.carrying, Key) and env.carrying.color == self.color: | |
self.is_locked = False | |
self.is_open = True | |
ret = True | |
ret = False | |
else: | |
self.is_open = not self.is_open | |
ret = True | |
self.block_block_set() | |
return ret | |
def encode(self, nb_dims=3, absolute_coordinates=False): | |
"""Encode the a description of this object as a 3-tuple of integers""" | |
# State, 0: open, 1: closed, 2: locked | |
if self.is_open: | |
state = 0 | |
elif self.is_locked: | |
state = 2 | |
elif not self.is_open: | |
state = 1 | |
if absolute_coordinates: | |
v = (OBJECT_TO_IDX[self.type], *self.cur_pos, COLOR_TO_IDX[self.color], state) | |
else: | |
v = (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color], state) | |
v += (0,) * (nb_dims-len(v)) | |
return v | |
def render(self, img): | |
c = COLORS[self.color] | |
if self.is_open: | |
fill_coords(img, point_in_rect(0.88, 1.00, 0.00, 1.00), c) | |
fill_coords(img, point_in_rect(0.92, 0.96, 0.04, 0.96), (0,0,0)) | |
return | |
# Door frame and door | |
if self.is_locked: | |
fill_coords(img, point_in_rect(0.00, 1.00, 0.00, 1.00), c) | |
fill_coords(img, point_in_rect(0.06, 0.94, 0.06, 0.94), 0.45 * np.array(c)) | |
# Draw key slot | |
fill_coords(img, point_in_rect(0.52, 0.75, 0.50, 0.56), c) | |
else: | |
fill_coords(img, point_in_rect(0.00, 1.00, 0.00, 1.00), c) | |
fill_coords(img, point_in_rect(0.04, 0.96, 0.04, 0.96), (0,0,0)) | |
fill_coords(img, point_in_rect(0.08, 0.92, 0.08, 0.92), c) | |
fill_coords(img, point_in_rect(0.12, 0.88, 0.12, 0.88), (0,0,0)) | |
# Draw door handle | |
fill_coords(img, point_in_circle(cx=0.75, cy=0.50, r=0.08), c) | |
class Switch(BlockableWorldObj): | |
def __init__(self, color, lockable_object=None, is_on=False, no_turn_off=True, no_light=True, locker_switch=False, block_set=None): | |
super().__init__('switch', color, block_set) | |
self.is_on = is_on | |
self.lockable_object = lockable_object | |
self.no_turn_off = no_turn_off | |
self.no_light = no_light | |
self.locker_switch = locker_switch | |
if self.block_set is not None: | |
if self.is_on: | |
raise ValueError("If using a block set, a Switch must be initialized as OFF") | |
if not self.no_turn_off: | |
raise ValueError("If using a block set, a Switch must be initialized can't be turned off") | |
def can_overlap(self): | |
"""The agent can only walk over this cell when the door is open""" | |
return False | |
def see_behind(self): | |
return True | |
def toggle(self, env, pos=None): | |
if self.blocked: | |
return False | |
if self.is_on: | |
if self.no_turn_off: | |
return False | |
self.is_on = not self.is_on | |
if self.lockable_object is not None: | |
if self.locker_switch: | |
# locker/unlocker switch | |
self.lockable_object.is_locked = not self.lockable_object.is_locked | |
else: | |
# opener switch | |
self.lockable_object.toggle(env, pos) | |
if self.is_on: | |
self.block_block_set() | |
if self.no_turn_off: | |
# assert that obj is toggled only once | |
assert not hasattr(self, "was_toggled") | |
self.was_toggled = True | |
return True | |
def block(self): | |
self.blocked = True | |
def encode(self, nb_dims=3, absolute_coordinates=False): | |
"""Encode the a description of this object as a 3-tuple of integers""" | |
# State, 0: off, 1: on | |
state = 1 if self.is_on else 0 | |
if self.no_light: | |
state = 0 | |
if absolute_coordinates: | |
v = (OBJECT_TO_IDX[self.type], *self.cur_pos, COLOR_TO_IDX[self.color], state) | |
else: | |
v = (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color], state) | |
v += (0,) * (nb_dims-len(v)) | |
return v | |
def render(self, img): | |
c = COLORS[self.color] | |
# Door frame and door | |
if self.is_on and not self.no_light: | |
fill_coords(img, point_in_rect(0.00, 1.00, 0.00, 1.00), c) | |
fill_coords(img, point_in_rect(0.04, 0.96, 0.04, 0.96), (0,0,0)) | |
fill_coords(img, point_in_rect(0.08, 0.92, 0.08, 0.92), c) | |
fill_coords(img, point_in_rect(0.12, 0.88, 0.12, 0.88), 0.45 * np.array(c)) | |
else: | |
fill_coords(img, point_in_rect(0.00, 1.00, 0.00, 1.00), c) | |
fill_coords(img, point_in_rect(0.04, 0.96, 0.04, 0.96), (0,0,0)) | |
fill_coords(img, point_in_rect(0.08, 0.92, 0.08, 0.92), c) | |
fill_coords(img, point_in_rect(0.12, 0.88, 0.12, 0.88), (0,0,0)) | |
class Key(WorldObj): | |
def __init__(self, color='blue'): | |
super(Key, self).__init__('key', color) | |
def can_pickup(self): | |
return True | |
def render(self, img): | |
c = COLORS[self.color] | |
# Vertical quad | |
fill_coords(img, point_in_rect(0.50, 0.63, 0.31, 0.88), c) | |
# Teeth | |
fill_coords(img, point_in_rect(0.38, 0.50, 0.59, 0.66), c) | |
fill_coords(img, point_in_rect(0.38, 0.50, 0.81, 0.88), c) | |
# Ring | |
fill_coords(img, point_in_circle(cx=0.56, cy=0.28, r=0.190), c) | |
fill_coords(img, point_in_circle(cx=0.56, cy=0.28, r=0.064), (0,0,0)) | |
class MarbleTee(WorldObj): | |
def __init__(self, color="red"): | |
super(MarbleTee, self).__init__('marbletee', color) | |
def can_pickup(self): | |
return False | |
def can_push(self): | |
return False | |
def render(self, img): | |
c = COLORS[self.color] | |
fill_coords(img, point_in_quadrangle( | |
(0.2, 0.5), | |
(0.8, 0.5), | |
(0.4, 0.6), | |
(0.6, 0.6), | |
), c) | |
fill_coords(img, point_in_triangle( | |
(0.4, 0.6), | |
(0.6, 0.6), | |
(0.5, 0.9), | |
), c) | |
class Marble(WorldObj): | |
def __init__(self, color='blue', env=None): | |
super(Marble, self).__init__('marble', color) | |
self.is_tagged = False | |
self.moving_dir = None | |
self.env = env | |
self.was_pushed = False | |
self.tee = MarbleTee(color) | |
self.tee_uncovered = False | |
def can_pickup(self): | |
return True | |
def step(self): | |
if self.moving_dir is not None: | |
prev_pos = self.cur_pos | |
self.go_forward() | |
if any(prev_pos != self.cur_pos) and not self.tee_uncovered: | |
assert self.was_pushed | |
# if Marble was moved for the first time, uncover the Tee | |
# self.env.grid.set(*prev_pos, self.tee) | |
self.env.put_obj_np(self.tee, prev_pos) | |
self.tee_uncovered = True | |
def is_moving(self): | |
return self.moving_dir is not None | |
def dir_vec(self): | |
""" | |
Get the direction vector for the agent, pointing in the direction | |
of forward movement. | |
""" | |
if self.moving_dir is not None: | |
return DIR_TO_VEC[self.moving_dir] | |
else: | |
return np.array((0, 0)) | |
def front_pos(self): | |
""" | |
Get the position of the cell that is right in front of the agent | |
""" | |
return self.cur_pos + self.dir_vec | |
def go_forward(self): | |
# Get the position in front of the agent | |
fwd_pos = self.front_pos | |
# Get the contents of the cell in front of the agent | |
fwd_cell = self.env.grid.get(*fwd_pos) | |
# Don't move if you are going to collide | |
if fwd_pos.tolist() != self.env.agent_pos.tolist() and (fwd_cell is None or fwd_cell.can_overlap()): | |
self.env.grid.set(*self.cur_pos, None) | |
self.env.grid.set(*fwd_pos, self) | |
self.cur_pos = fwd_pos | |
return True | |
# push object if pushable | |
if fwd_pos.tolist() != self.env.agent_pos.tolist() and (fwd_cell is not None and fwd_cell.can_push()): | |
fwd_cell.push(push_dir=self.moving_dir, pusher=self) | |
self.moving_dir = None | |
return True | |
else: | |
self.moving_dir = None | |
return False | |
def can_push(self): | |
return True | |
def push(self, push_dir, pusher=None): | |
if type(push_dir) is not int: | |
raise ValueError("Direction must be of type int and is of type {}".format(type(push_dir))) | |
self.moving_dir = push_dir | |
if self.moving_dir is not None: | |
self.was_pushed = True | |
def render(self, img): | |
color = COLORS[self.color] | |
if self.is_tagged: | |
color = color / 2 | |
fill_coords(img, point_in_circle(0.5, 0.5, 0.20), color) | |
fill_coords(img, point_in_circle(0.55, 0.45, 0.07), (0, 0, 0)) | |
def tag(self,): | |
self.is_tagged = True | |
def encode(self, nb_dims=3, absolute_coordinates=False): | |
"""Encode the a description of this object as a nb_dims-tuple of integers""" | |
if absolute_coordinates: | |
core = (OBJECT_TO_IDX[self.type], *self.cur_pos, COLOR_TO_IDX[self.color]) | |
else: | |
core = (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color]) | |
return core + (1 if self.is_tagged else 0,) * (nb_dims - len(core)) | |
class Ball(WorldObj): | |
def __init__(self, color='blue'): | |
super(Ball, self).__init__('ball', color) | |
self.is_tagged = False | |
def can_pickup(self): | |
return True | |
def render(self, img): | |
color = COLORS[self.color] | |
if self.is_tagged: | |
color = color / 2 | |
fill_coords(img, point_in_circle(0.5, 0.5, 0.31), color) | |
def tag(self,): | |
self.is_tagged = True | |
def encode(self, nb_dims=3, absolute_coordinates=False): | |
"""Encode the a description of this object as a nb_dims-tuple of integers""" | |
if absolute_coordinates: | |
core = (OBJECT_TO_IDX[self.type], *self.cur_pos, COLOR_TO_IDX[self.color]) | |
else: | |
core = (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color]) | |
return core + (1 if self.is_tagged else 0,) * (nb_dims - len(core)) | |
class Apple(WorldObj): | |
def __init__(self, color='red', eaten=False): | |
super(Apple, self).__init__('apple', color) | |
self.is_tagged = False | |
self.eaten = eaten | |
assert self.color != "yellow" | |
def revert(self, color='red', eaten=False): | |
self.color = color | |
self.is_tagged = False | |
self.eaten = eaten | |
assert self.color != "yellow" | |
def can_pickup(self): | |
return False | |
def render(self, img): | |
color = COLORS[self.color] | |
if self.is_tagged: | |
color = color / 2 | |
fill_coords(img, point_in_circle(0.5, 0.5, 0.31), color) | |
fill_coords(img, point_in_rect(0.1, 0.9, 0.1, 0.55), (0, 0, 0)) | |
fill_coords(img, point_in_circle(0.35, 0.5, 0.15), color) | |
fill_coords(img, point_in_circle(0.65, 0.5, 0.15), color) | |
fill_coords(img, point_in_rect(0.48, 0.52, 0.2, 0.45), COLORS["brown"]) | |
# quadrangle | |
fill_coords(img, point_in_quadrangle( | |
(0.52, 0.25), | |
(0.65, 0.1), | |
(0.75, 0.3), | |
(0.90, 0.15), | |
), COLORS["green"]) | |
if self.eaten: | |
assert self.color == "yellow" | |
fill_coords(img, point_in_circle(0.74, 0.6, 0.23), (0,0,0)) | |
fill_coords(img, point_in_circle(0.26, 0.6, 0.23), (0,0,0)) | |
def toggle(self, env, pos): | |
if not self.eaten: | |
self.eaten = True | |
assert self.color != "yellow" | |
self.color = "yellow" | |
return True | |
else: | |
assert self.color == "yellow" | |
return False | |
def tag(self,): | |
self.is_tagged = True | |
def encode(self, nb_dims=3, absolute_coordinates=False): | |
"""Encode the a description of this object as a nb_dims-tuple of integers""" | |
# eaten <=> yellow | |
assert self.eaten == (self.color == "yellow") | |
if absolute_coordinates: | |
core = (OBJECT_TO_IDX[self.type], *self.cur_pos, COLOR_TO_IDX[self.color]) | |
else: | |
core = (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color]) | |
return core + (1 if self.is_tagged else 0,) * (nb_dims - len(core)) | |
class GeneratorPlatform(WorldObj): | |
def __init__(self, color="red"): | |
super(GeneratorPlatform, self).__init__('generatorplatform', color) | |
def can_pickup(self): | |
return False | |
def can_push(self): | |
return False | |
def render(self, img): | |
c = COLORS[self.color] | |
fill_coords(img, point_in_circle(0.5, 0.5, 0.2), c) | |
fill_coords(img, point_in_circle(0.5, 0.5, 0.18), (0,0,0)) | |
fill_coords(img, point_in_circle(0.5, 0.5, 0.16), c) | |
fill_coords(img, point_in_circle(0.5, 0.5, 0.14), (0,0,0)) | |
class AppleGenerator(BlockableWorldObj): | |
def __init__(self, color="red", is_pressed=False, block_set=None, on_push=None, marble_activation=False): | |
super(AppleGenerator, self).__init__('applegenerator', color, block_set) | |
self.is_pressed = is_pressed | |
self.on_push = on_push | |
self.marble_activation = marble_activation | |
def can_pickup(self): | |
return False | |
def block(self): | |
self.blocked = True | |
def can_push(self): | |
return True | |
def push(self, push_dir=None, pusher=None): | |
if self.marble_activation: | |
# check that it is marble that pushed the generator | |
if type(pusher) != Marble: | |
return self.block_block_set() | |
if not self.blocked: | |
self.is_pressed = True | |
if self.on_push: | |
self.on_push() | |
return self.block_block_set() | |
else: | |
return False | |
def render(self, img): | |
c = COLORS[self.color] | |
if not self.marble_activation: | |
# Outline | |
fill_coords(img, point_in_rect(0.15, 0.85, 0.15, 0.85), c) | |
# fill_coords(img, point_in_rect(0.17, 0.83, 0.17, 0.83), (0, 0, 0)) | |
fill_coords(img, point_in_rect(0.16, 0.84, 0.16, 0.84), (0, 0, 0)) | |
# Outline | |
fill_coords(img, point_in_rect(0.22, 0.78, 0.22, 0.78), c) | |
fill_coords(img, point_in_rect(0.24, 0.76, 0.24, 0.76), (0, 0, 0)) | |
else: | |
# Outline | |
fill_coords(img, point_in_circle(0.5, 0.5, 0.37), c) | |
fill_coords(img, point_in_circle(0.5, 0.5, 0.35), (0, 0, 0)) | |
# Outline | |
fill_coords(img, point_in_circle(0.5, 0.5, 0.32), c) | |
fill_coords(img, point_in_circle(0.5, 0.5, 0.30), (0, 0, 0)) | |
# Apple inside | |
fill_coords(img, point_in_circle(0.5, 0.5, 0.2), COLORS["red"]) | |
# fill_coords(img, point_in_rect(0.18, 0.82, 0.18, 0.55), (0, 0, 0)) | |
fill_coords(img, point_in_rect(0.30, 0.65, 0.30, 0.55), (0, 0, 0)) | |
fill_coords(img, point_in_circle(0.42, 0.5, 0.12), COLORS["red"]) | |
fill_coords(img, point_in_circle(0.58, 0.5, 0.12), COLORS["red"]) | |
# peteljka | |
fill_coords(img, point_in_rect(0.49, 0.50, 0.25, 0.45), COLORS["brown"]) | |
# leaf | |
fill_coords(img, point_in_quadrangle( | |
(0.52, 0.32), | |
(0.60, 0.21), | |
(0.70, 0.34), | |
(0.80, 0.23), | |
), COLORS["green"]) | |
def encode(self, nb_dims=3, absolute_coordinates=False): | |
"""Encode the a description of this object as a 3-tuple of integers""" | |
type = 2 if self.marble_activation else 1 | |
if absolute_coordinates: | |
v = (OBJECT_TO_IDX[self.type], *self.cur_pos, COLOR_TO_IDX[self.color], type) | |
else: | |
v = (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color], type) | |
v += (0,) * (nb_dims - len(v)) | |
return v | |
class Box(WorldObj): | |
def __init__(self, color="red", contains=None): | |
super(Box, self).__init__('box', color) | |
self.contains = contains | |
def can_pickup(self): | |
return True | |
def render(self, img): | |
c = COLORS[self.color] | |
# Outline | |
fill_coords(img, point_in_rect(0.12, 0.88, 0.12, 0.88), c) | |
fill_coords(img, point_in_rect(0.18, 0.82, 0.18, 0.82), (0,0,0)) | |
# Horizontal slit | |
fill_coords(img, point_in_rect(0.16, 0.84, 0.47, 0.53), c) | |
def toggle(self, env, pos): | |
# Replace the box by its contents | |
env.grid.set(*pos, self.contains) | |
return True | |
class LockableBox(BlockableWorldObj): | |
def __init__(self, color="red", is_locked=False, contains=None, block_set=None): | |
super(LockableBox, self).__init__('lockablebox', color, block_set) | |
self.contains = contains | |
self.is_locked = is_locked | |
self.is_open = False | |
def can_pickup(self): | |
return True | |
def encode(self, nb_dims=3, absolute_coordinates=False): | |
"""Encode the a description of this object as a 3-tuple of integers""" | |
# State, 0: open, 1: closed, 2: locked | |
# 2 and 1 to be consistent with doors | |
if self.is_locked: | |
state = 2 | |
else: | |
state = 1 | |
if absolute_coordinates: | |
v = (OBJECT_TO_IDX[self.type], *self.cur_pos, COLOR_TO_IDX[self.color], state) | |
else: | |
v = (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color], state) | |
v += (0,) * (nb_dims - len(v)) | |
return v | |
def render(self, img): | |
c = COLORS[self.color] | |
# Outline | |
fill_coords(img, point_in_rect(0.12, 0.88, 0.12, 0.88), c) | |
if self.is_locked: | |
fill_coords(img, point_in_rect(0.18, 0.82, 0.18, 0.82), 0.45 * np.array(c)) | |
else: | |
fill_coords(img, point_in_rect(0.18, 0.82, 0.18, 0.82), (0, 0, 0)) | |
# Horizontal slit | |
fill_coords(img, point_in_rect(0.16, 0.84, 0.47, 0.53), c) | |
def toggle(self, env, pos): | |
if self.blocked: | |
return False | |
if self.is_locked: | |
if isinstance(env.carrying, Key) and env.carrying.color == self.color: | |
self.is_locked = False | |
self.is_open = True | |
return True | |
return False | |
self.is_open = True | |
# Replace the box by its contents | |
env.grid.set(*pos, self.contains) | |
self.block_block_set() | |
# assert that obj is toggled only once | |
assert not hasattr(self, "was_toggled") | |
self.was_toggled = True | |
return True | |
def block(self): | |
self.blocked = True | |
class NPC(ABC, WorldObj): | |
def __init__(self, color, view_size=7): | |
super().__init__('npc', color) | |
self.point_dir = 255 # initially no point | |
self.introduction_statement = "Help please " | |
self.list_of_possible_utterances = NPC.get_list_of_possible_utterances() | |
self.view_size = view_size | |
self.carrying = False | |
self.prim_actions_dict = SocialAINPCActionsDict | |
self.reset_last_action() | |
def get_list_of_possible_utterances(): | |
return ["no_op"] | |
def _npc_action(func): | |
""" | |
Decorator that logs the last action | |
""" | |
def func_wrapper(self, *args, **kwargs): | |
if self.env.add_npc_last_prim_action: | |
self.last_action = func.__name__ | |
return func(self, *args, **kwargs) | |
return func_wrapper | |
def reset_last_action(self): | |
self.last_action = "no_op" | |
def step(self): | |
self.reset_last_action() | |
if self.env.hidden_npc: | |
info = { | |
"prim_action": "no_op", | |
"utterance": "no_op", | |
"was_introduced_to": self.was_introduced_to | |
} | |
return None, info | |
else: | |
return None, None | |
def handle_introduction(self, utterance): | |
reply, action = None, None | |
# introduction and language | |
if self.env.parameters.get("Pragmatic_frame_complexity", "No") == "No": | |
# only once | |
if not self.was_introduced_to: | |
self.was_introduced_to = True | |
elif self.env.parameters["Pragmatic_frame_complexity"] == "Eye_contact": | |
# only first time at eye contact | |
if self.is_eye_contact() and not self.was_introduced_to: | |
self.was_introduced_to = True | |
# if not self.was_introduced_to: | |
# rotate to see the agent | |
# action = self.look_at_action(self.env.agent_pos) | |
elif self.env.parameters["Pragmatic_frame_complexity"] == "Ask": | |
# every time asked | |
if utterance == self.introduction_statement: | |
self.was_introduced_to = True | |
elif self.env.parameters["Pragmatic_frame_complexity"] == "Ask_Eye_contact": | |
# only first time at eye contact with the introduction statement | |
if (self.is_eye_contact() and utterance == self.introduction_statement) and not self.was_introduced_to: | |
self.was_introduced_to = True | |
# if not self.was_introduced_to: | |
# # rotate to see the agent | |
# action = self.look_at_action(self.env.agent_pos) | |
else: | |
raise NotImplementedError() | |
return reply, action | |
def look_at_action(self, target_pos): | |
# rotate to see the target_pos | |
wanted_dir = self.compute_wanted_dir(target_pos) | |
action = self.compute_turn_action(wanted_dir) | |
return action | |
def rotate_left(self): | |
self.npc_dir -= 1 | |
if self.npc_dir < 0: | |
self.npc_dir += 4 | |
return True | |
def rotate_right(self): | |
self.npc_dir = (self.npc_dir + 1) % 4 | |
return True | |
def path_to_toggle_pos(self, goal_pos): | |
""" | |
Return the next action from the path to toggling an object at goal_pos | |
""" | |
if type(goal_pos) != np.ndarray or goal_pos.shape != (2,): | |
raise ValueError(f"goal_pos must be a np.ndarray of shape (2,) and is {goal_pos}") | |
assert type(self.front_pos) == np.ndarray and self.front_pos.shape == (2,) | |
if all(self.front_pos == goal_pos): | |
# in front of door | |
return self.toggle_action | |
else: | |
return self.path_to_pos(goal_pos) | |
def turn_to_see_agent(self): | |
wanted_dir = self.compute_wanted_dir(self.env.agent_pos) | |
action = self.compute_turn_action(wanted_dir) | |
return action | |
def relative_coords(self, x, y): | |
""" | |
Check if a grid position belongs to the npc's field of view, and returns the corresponding coordinates | |
""" | |
vx, vy = self.get_view_coords(x, y) | |
if vx < 0 or vy < 0 or vx >= self.view_size or vy >= self.view_size: | |
return None | |
return vx, vy | |
def get_view_coords(self, i, j): | |
""" | |
Translate and rotate absolute grid coordinates (i, j) into the | |
npc's partially observable view (sub-grid). Note that the resulting | |
coordinates may be negative or outside of the npc's view size. | |
""" | |
ax, ay = self.cur_pos | |
dx, dy = self.dir_vec | |
rx, ry = self.right_vec | |
# Compute the absolute coordinates of the top-left view corner | |
sz = self.view_size | |
hs = self.view_size // 2 | |
tx = ax + (dx * (sz-1)) - (rx * hs) | |
ty = ay + (dy * (sz-1)) - (ry * hs) | |
lx = i - tx | |
ly = j - ty | |
# Project the coordinates of the object relative to the top-left | |
# corner onto the agent's own coordinate system | |
vx = (rx*lx + ry*ly) | |
vy = -(dx*lx + dy*ly) | |
return vx, vy | |
def is_pointing(self): | |
return self.point_dir != 255 | |
def path_to_pos(self, goal_pos): | |
""" | |
Return the next action from the path to goal_pos | |
""" | |
if type(goal_pos) != np.ndarray or goal_pos.shape != (2,): | |
raise ValueError(f"goal_pos must be a np.ndarray of shape (2,) and is {goal_pos}") | |
def neighbors(n): | |
n_nd = np.array(n) | |
adjacent_positions = [ | |
n_nd + np.array([ 0, 1]), | |
n_nd + np.array([ 0,-1]), | |
n_nd + np.array([ 1, 0]), | |
n_nd + np.array([-1, 0]), | |
] | |
adjacent_cells = map(lambda pos: self.env.grid.get(*pos), adjacent_positions) | |
# keep the positions that don't have anything on or can_overlap | |
neighbors = [ | |
tuple(pos) for pos, cell in | |
zip(adjacent_positions, adjacent_cells) if ( | |
all(pos == goal_pos) | |
or cell is None | |
or cell.can_overlap() | |
) and not all(pos == self.env.agent_pos) | |
] | |
for n1 in neighbors: | |
yield n1 | |
def distance(n1, n2): | |
return 1 | |
def cost(n, goal): | |
# manhattan | |
return int(np.abs(np.array(n) - np.array(goal)).sum()) | |
# def is_goal_reached(n, goal): | |
# return all(n == goal) | |
path = astar.find_path( | |
# tuples because np.ndarray is not hashable | |
tuple(self.cur_pos), | |
tuple(goal_pos), | |
neighbors_fnct=neighbors, | |
heuristic_cost_estimate_fnct=cost, | |
distance_between_fnct=distance, | |
# is_goal_reached_fnct=is_goal_reached | |
) | |
if path is None: | |
# no possible path | |
return None | |
path = list(path) | |
assert all(path[0] == self.cur_pos) | |
next_step = path[1] | |
wanted_dir = self.compute_wanted_dir(next_step) | |
if self.npc_dir == wanted_dir: | |
return self.go_forward | |
else: | |
return self.compute_turn_action(wanted_dir) | |
def gen_obs_grid(self): | |
""" | |
Generate the sub-grid observed by the npc. | |
This method also outputs a visibility mask telling us which grid | |
cells the npc can actually see. | |
""" | |
view_size = self.view_size | |
topX, topY, botX, botY = self.env.get_view_exts(dir=self.npc_dir, view_size=view_size, pos=self.cur_pos) | |
grid = self.env.grid.slice(topX, topY, view_size, view_size) | |
for i in range(self.npc_dir + 1): | |
grid = grid.rotate_left() | |
# Process ocluders and visibility | |
# Note that this incurs some performance cost | |
if not self.env.see_through_walls: | |
vis_mask = grid.process_vis(agent_pos=(view_size // 2, view_size - 1)) | |
else: | |
vis_mask = np.ones(shape=(grid.width, grid.height), dtype=np.bool) | |
# Make it so the npc sees what it's carrying | |
# We do this by placing the carried object at the agent's position | |
# in the agent's partially observable view | |
npc_pos = grid.width // 2, grid.height - 1 | |
if self.carrying: | |
grid.set(*npc_pos, self.carrying) | |
else: | |
grid.set(*npc_pos, None) | |
return grid, vis_mask | |
def is_near_agent(self): | |
ax, ay = self.env.agent_pos | |
wx, wy = self.cur_pos | |
if (ax == wx and abs(ay - wy) == 1) or (ay == wy and abs(ax - wx) == 1): | |
return True | |
return False | |
def is_eye_contact(self): | |
""" | |
Returns true if the agent and the NPC are looking at each other | |
""" | |
if self.cur_pos[1] == self.env.agent_pos[1]: | |
# same y | |
if self.cur_pos[0] > self.env.agent_pos[0]: | |
return self.npc_dir == 2 and self.env.agent_dir == 0 | |
else: | |
return self.npc_dir == 0 and self.env.agent_dir == 2 | |
if self.cur_pos[0] == self.env.agent_pos[0]: | |
# same x | |
if self.cur_pos[1] > self.env.agent_pos[1]: | |
return self.npc_dir == 3 and self.env.agent_dir == 1 | |
else: | |
return self.npc_dir == 1 and self.env.agent_dir == 3 | |
return False | |
def compute_wanted_dir(self, target_pos): | |
""" | |
Computes the direction in which the NPC should look to see target pos | |
""" | |
distance_vec = target_pos - self.cur_pos | |
angle = np.degrees(np.arctan2(*distance_vec)) | |
if angle < 0: | |
angle += 360 | |
if angle < 45: | |
wanted_dir = 1 # S | |
elif angle < 135: | |
wanted_dir = 0 # E | |
elif angle < 225: | |
wanted_dir = 3 # N | |
elif angle < 315: | |
wanted_dir = 2 # W | |
elif angle < 360: | |
wanted_dir = 1 # S | |
return wanted_dir | |
def compute_wanted_point_dir(self, target_pos): | |
point_dir = self.compute_wanted_dir(target_pos) | |
return point_dir | |
# dir = 0 # E | |
# dir = 1 # S | |
# dir = 2 # W | |
# dir = 3 # N | |
# dir = 255 # no point | |
def stop_point(self): | |
self.point_dir = 255 | |
return True | |
def point_E(self): | |
self.point_dir = point_dir_encoding["point_E"] | |
return True | |
def point_S(self): | |
self.point_dir = point_dir_encoding["point_S"] | |
return True | |
def point_W(self): | |
self.point_dir = point_dir_encoding["point_W"] | |
return True | |
def point_N(self): | |
self.point_dir = point_dir_encoding["point_N"] | |
return True | |
def compute_wanted_point_action(self, target_pos): | |
point_dir = self.compute_wanted_dir(target_pos) | |
if point_dir == point_dir_encoding["point_E"]: | |
return self.point_E | |
elif point_dir == point_dir_encoding["point_S"]: | |
return self.point_S | |
elif point_dir == point_dir_encoding["point_W"]: | |
return self.point_W | |
elif point_dir == point_dir_encoding["point_N"]: | |
return self.point_N | |
else: | |
raise ValueError("Unknown direction {}".format(point_dir)) | |
def compute_turn_action(self, wanted_dir): | |
""" | |
Return the action turning for in the direction of wanted_dir | |
""" | |
if self.npc_dir == wanted_dir: | |
# return lambda *args: None | |
return None | |
if (wanted_dir - self.npc_dir) == 1 or (wanted_dir == 0 and self.npc_dir == 3): | |
return self.rotate_right | |
if (wanted_dir - self.npc_dir) == - 1 or (wanted_dir == 3 and self.npc_dir == 0): | |
return self.rotate_left | |
else: | |
return self.env._rand_elem([self.rotate_left, self.rotate_right]) | |
def go_forward(self): | |
# Get the position in front of the agent | |
fwd_pos = self.front_pos | |
# Get the contents of the cell in front of the agent | |
fwd_cell = self.env.grid.get(*fwd_pos) | |
# Don't move if you are going to collide | |
if fwd_pos.tolist() != self.env.agent_pos.tolist() and (fwd_cell is None or fwd_cell.can_overlap()): | |
self.env.grid.set(*self.cur_pos, None) | |
self.env.grid.set(*fwd_pos, self) | |
self.cur_pos = fwd_pos | |
return True | |
# push object if pushable | |
if fwd_pos.tolist() != self.env.agent_pos.tolist() and (fwd_cell is not None and fwd_cell.can_push()): | |
fwd_cell.push(push_dir=self.npc_dir, pusher=self) | |
else: | |
return False | |
def toggle_action(self): | |
fwd_pos = self.front_pos | |
fwd_cell = self.env.grid.get(*fwd_pos) | |
if fwd_cell: | |
return fwd_cell.toggle(self.env, fwd_pos) | |
return False | |
def dir_vec(self): | |
""" | |
Get the direction vector for the agent, pointing in the direction | |
of forward movement. | |
""" | |
assert self.npc_dir >= 0 and self.npc_dir < 4 | |
return DIR_TO_VEC[self.npc_dir] | |
def right_vec(self): | |
""" | |
Get the vector pointing to the right of the agent. | |
""" | |
dx, dy = self.dir_vec | |
return np.array((-dy, dx)) | |
def front_pos(self): | |
""" | |
Get the position of the cell that is right in front of the agent | |
""" | |
return self.cur_pos + self.dir_vec | |
def back_pos(self): | |
""" | |
Get the position of the cell that is right in front of the agent | |
""" | |
return self.cur_pos - self.dir_vec | |
def right_pos(self): | |
""" | |
Get the position of the cell that is right in front of the agent | |
""" | |
return self.cur_pos + self.right_vec | |
def left_pos(self): | |
""" | |
Get the position of the cell that is right in front of the agent | |
""" | |
return self.cur_pos - self.right_vec | |
def draw_npc_face(self, c): | |
assert self.npc_type == 0 | |
assert all(COLORS[self.color] == c) | |
shapes = [] | |
shapes_colors = [] | |
# Draw eyes | |
shapes.append(point_in_circle(cx=0.70, cy=0.50, r=0.10)) | |
shapes_colors.append(c) | |
shapes.append(point_in_circle(cx=0.30, cy=0.50, r=0.10)) | |
shapes_colors.append(c) | |
# Draw mouth | |
shapes.append(point_in_rect(0.20, 0.80, 0.72, 0.81)) | |
shapes_colors.append(c) | |
# Draw bottom hat | |
shapes.append(point_in_triangle((0.15, 0.28), | |
(0.85, 0.28), | |
(0.50, 0.05))) | |
shapes_colors.append(c) | |
# Draw top hat | |
shapes.append(point_in_rect(0.30, 0.70, 0.05, 0.28)) | |
shapes_colors.append(c) | |
return shapes, shapes_colors | |
def render(self, img): | |
c = COLORS[self.color] | |
npc_shapes = [] | |
npc_shapes_colors = [] | |
npc_face_shapes, npc_face_shapes_colors = self.draw_npc_face(c=c) | |
npc_shapes.extend(npc_face_shapes) | |
npc_shapes_colors.extend(npc_face_shapes_colors) | |
if hasattr(self, "npc_dir"): | |
# Pre-rotation to ensure npc_dir = 1 means NPC looks downwards | |
npc_shapes = [rotate_fn(v, cx=0.5, cy=0.5, theta=-1*(math.pi / 2)) for v in npc_shapes] | |
# Rotate npc based on its direction | |
npc_shapes = [rotate_fn(v, cx=0.5, cy=0.5, theta=(math.pi/2) * self.npc_dir) for v in npc_shapes] | |
if hasattr(self, "point_dir"): | |
if self.is_pointing(): | |
# default points east | |
finger = point_in_triangle((0.85, 0.1), | |
(0.85, 0.3), | |
(0.99, 0.2)) | |
finger = rotate_fn(finger, cx=0.5, cy=0.5, theta=(math.pi/2) * self.point_dir) | |
npc_shapes.append(finger) | |
npc_shapes_colors.append(c) | |
if self.last_action == self.toggle_action.__name__: | |
# T symbol | |
t_symbol = [point_in_rect(0.8, 0.84, 0.02, 0.18), point_in_rect(0.8, 0.95, 0.08, 0.12)] | |
t_symbol = [rotate_fn(v, cx=0.5, cy=0.5, theta=(math.pi/2) * self.npc_dir) for v in t_symbol] | |
npc_shapes.extend(t_symbol) | |
npc_shapes_colors.extend([c, c]) | |
elif self.last_action == self.go_forward.__name__: | |
# symbol for Forward (ommited for speed) | |
pass | |
if self.env.hidden_npc: | |
# crossed eye symbol | |
dx, dy = 0.15, -0.2 | |
# draw eye | |
npc_shapes.append(point_in_circle(cx=0.70+dx, cy=0.48+dy, r=0.11)) | |
npc_shapes_colors.append((128,128,128)) | |
npc_shapes.append(point_in_circle(cx=0.30+dx, cy=0.52+dy, r=0.11)) | |
npc_shapes_colors.append((128,128,128)) | |
npc_shapes.append(point_in_circle(0.5+dx, 0.5+dy, 0.25)) | |
npc_shapes_colors.append((128, 128, 128)) | |
npc_shapes.append(point_in_circle(0.5+dx, 0.5+dy, 0.20)) | |
npc_shapes_colors.append((0, 0, 0)) | |
npc_shapes.append(point_in_circle(0.5+dx, 0.5+dy, 0.1)) | |
npc_shapes_colors.append((128, 128, 128)) | |
# cross it | |
npc_shapes.append(point_in_line(0.2+dx, 0.7+dy, 0.8+dx, 0.3+dy, 0.04)) | |
npc_shapes_colors.append((128, 128, 128)) | |
# Draw shapes | |
for v, c in zip(npc_shapes, npc_shapes_colors): | |
fill_coords(img, v, c) | |
def cache(self, *args, **kwargs): | |
"""Used for cached rendering.""" | |
# adding npc_dir and point_dir because, when egocentric coordinates are used, | |
# they can result in the same encoding but require new rendering | |
return self.encode(*args, **kwargs) + (self.npc_dir, self.point_dir,) | |
def can_overlap(self): | |
# If the NPC is hidden, agent can overlap on it | |
return self.env.hidden_npc | |
def encode(self, nb_dims=3, absolute_coordinates=False): | |
if not hasattr(self, "npc_type"): | |
raise ValueError("An NPC class must implement the npc_type (int)") | |
if not hasattr(self, "env"): | |
raise ValueError("An NPC class must have the env") | |
assert nb_dims == 6+2*bool(absolute_coordinates) | |
if self.env.hidden_npc: | |
return (1,) + (0,) * (nb_dims-1) | |
assert self.env.egocentric_observation == (not absolute_coordinates) | |
if absolute_coordinates: | |
v = (OBJECT_TO_IDX[self.type], *self.cur_pos, COLOR_TO_IDX[self.color], self.npc_type) | |
else: | |
v = (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color], self.npc_type) | |
if self.env.add_npc_direction: | |
assert hasattr(self, "npc_dir"), "4D but there is no npc dir in NPC state" | |
assert self.npc_dir >= 0 | |
if self.env.egocentric_observation: | |
assert self.env.agent_dir >= 0 | |
# 0 - eye contact; 2 - gaze in same direction; 1 - to left; 3 - to right | |
npc_dir_enc = (self.npc_dir - self.env.agent_dir + 2) % 4 | |
v += (npc_dir_enc,) | |
else: | |
v += (self.npc_dir,) | |
if self.env.add_npc_point_direction: | |
assert hasattr(self, "point_dir"), "5D but there is no npc point dir in NPC state" | |
if self.point_dir == 255: | |
# no pointing | |
v += (self.point_dir,) | |
elif 0 <= self.point_dir <= 3: | |
# pointing | |
if self.env.egocentric_observation: | |
assert self.env.agent_dir >= 0 | |
# 0 - pointing at agent; 2 - point in direction of agent gaze; 1 - to left; 3 - to right | |
point_enc = (self.point_dir - self.env.agent_dir + 2) % 4 | |
v += (point_enc,) | |
else: | |
v += (self.point_dir,) | |
else: | |
raise ValueError(f"Undefined point direction {self.point_dir}") | |
if self.env.add_npc_last_prim_action: | |
assert hasattr(self, "last_action"), "6D but there is no last action in NPC state" | |
if self.last_action in ["point_E", "point_S", "point_W", "point_N"] and self.env.egocentric_observation: | |
# get the direction of the last point | |
last_action_point_dir = point_dir_encoding[self.last_action] | |
# convert to relative dir | |
# 0 - pointing at agent; 2 - point in direction of agent gaze; 1 - to left; 3 - to right | |
last_action_relative_point_dir = (last_action_point_dir - self.env.agent_dir + 2) % 4 | |
# the point_X action ids are in range [point_E, ... , point_N] | |
# id of point_E is the starting one, we use the same range [E, S, W ,N ] -> [at, left, same, right] | |
last_action_id = self.prim_actions_dict["point_E"] + last_action_relative_point_dir | |
else: | |
last_action_id = self.prim_actions_dict[self.last_action] | |
v += (last_action_id,) | |
assert self.point_dir >= 0 | |
assert len(v) == nb_dims | |
return v | |
class Grid: | |
""" | |
Represent a grid and operations on it | |
""" | |
# Static cache of pre-renderer tiles | |
tile_cache = {} | |
def __init__(self, width, height, nb_obj_dims): | |
assert width >= 3 | |
assert height >= 3 | |
self.width = width | |
self.height = height | |
self.nb_obj_dims = nb_obj_dims | |
self.grid = [None] * width * height | |
def __contains__(self, key): | |
if isinstance(key, WorldObj): | |
for e in self.grid: | |
if e is key: | |
return True | |
elif isinstance(key, tuple): | |
for e in self.grid: | |
if e is None: | |
continue | |
if (e.color, e.type) == key: | |
return True | |
if key[0] is None and key[1] == e.type: | |
return True | |
return False | |
def __eq__(self, other): | |
grid1 = self.encode() | |
grid2 = other.encode() | |
return np.array_equal(grid2, grid1) | |
def __ne__(self, other): | |
return not self == other | |
def copy(self): | |
from copy import deepcopy | |
return deepcopy(self) | |
def set(self, i, j, v): | |
assert i >= 0 and i < self.width | |
assert j >= 0 and j < self.height | |
self.grid[j * self.width + i] = v | |
def get(self, i, j): | |
assert i >= 0 and i < self.width | |
assert j >= 0 and j < self.height | |
return self.grid[j * self.width + i] | |
def horz_wall(self, x, y, length=None, obj_type=Wall): | |
if length is None: | |
length = self.width - x | |
for i in range(0, length): | |
o = obj_type() | |
o.cur_pos = np.array((x+i, y)) | |
self.set(x + i, y, o) | |
def vert_wall(self, x, y, length=None, obj_type=Wall): | |
if length is None: | |
length = self.height - y | |
for j in range(0, length): | |
o = obj_type() | |
o.cur_pos = np.array((x, y+j)) | |
self.set(x, y + j, o) | |
def wall_rect(self, x, y, w, h): | |
self.horz_wall(x, y, w) | |
self.horz_wall(x, y+h-1, w) | |
self.vert_wall(x, y, h) | |
self.vert_wall(x+w-1, y, h) | |
def rotate_left(self): | |
""" | |
Rotate the grid to the left (counter-clockwise) | |
""" | |
grid = Grid(self.height, self.width, self.nb_obj_dims) | |
for i in range(self.width): | |
for j in range(self.height): | |
v = self.get(i, j) | |
grid.set(j, grid.height - 1 - i, v) | |
return grid | |
def slice(self, topX, topY, width, height): | |
""" | |
Get a subset of the grid | |
""" | |
grid = Grid(width, height, self.nb_obj_dims) | |
for j in range(0, height): | |
for i in range(0, width): | |
x = topX + i | |
y = topY + j | |
if x >= 0 and x < self.width and \ | |
y >= 0 and y < self.height: | |
v = self.get(x, y) | |
else: | |
v = Wall() | |
grid.set(i, j, v) | |
return grid | |
def render_tile( | |
cls, | |
obj, | |
agent_dir=None, | |
highlight=False, | |
tile_size=TILE_PIXELS, | |
subdivs=3, | |
nb_obj_dims=3, | |
mask_unobserved=False | |
): | |
""" | |
Render a tile and cache the result | |
""" | |
# Hash map lookup key for the cache | |
key = (agent_dir, highlight, tile_size, mask_unobserved) | |
# key = obj.encode(nb_dims=nb_obj_dims) + key if obj else key | |
key = obj.cache(nb_dims=nb_obj_dims) + key if obj else key | |
if key in cls.tile_cache: | |
return cls.tile_cache[key] | |
img = np.zeros(shape=(tile_size * subdivs, tile_size * subdivs, 3), dtype=np.uint8) # 3D for rendering | |
# Draw the grid lines (top and left edges) | |
fill_coords(img, point_in_rect(0, 0.031, 0, 1), (100, 100, 100)) | |
fill_coords(img, point_in_rect(0, 1, 0, 0.031), (100, 100, 100)) | |
if obj != None: | |
obj.render(img) | |
# Overlay the agent on top | |
if agent_dir is not None: | |
tri_fn = point_in_triangle( | |
(0.12, 0.19), | |
(0.87, 0.50), | |
(0.12, 0.81), | |
) | |
# Rotate the agent based on its direction | |
tri_fn = rotate_fn(tri_fn, cx=0.5, cy=0.5, theta=0.5*math.pi*agent_dir) | |
fill_coords(img, tri_fn, (255, 0, 0)) | |
# Highlight the cell if needed | |
if highlight: | |
highlight_img(img) | |
elif mask_unobserved: | |
# mask unobserved and not highlighted -> unobserved by the agent | |
img *= 0 | |
# Downsample the image to perform supersampling/anti-aliasing | |
img = downsample(img, subdivs) | |
# Cache the rendered tile | |
cls.tile_cache[key] = img | |
return img | |
def render( | |
self, | |
tile_size, | |
agent_pos=None, | |
agent_dir=None, | |
highlight_mask=None, | |
mask_unobserved=False, | |
): | |
""" | |
Render this grid at a given scale | |
:param r: target renderer object | |
:param tile_size: tile size in pixels | |
""" | |
if highlight_mask is None: | |
highlight_mask = np.zeros(shape=(self.width, self.height), dtype=np.bool) | |
# Compute the total grid size | |
width_px = self.width * tile_size | |
height_px = self.height * tile_size | |
img = np.zeros(shape=(height_px, width_px, 3), dtype=np.uint8) | |
# Render the grid | |
for j in range(0, self.height): | |
for i in range(0, self.width): | |
cell = self.get(i, j) | |
agent_here = np.array_equal(agent_pos, (i, j)) | |
tile_img = Grid.render_tile( | |
cell, | |
agent_dir=agent_dir if agent_here else None, | |
highlight=highlight_mask[i, j], | |
tile_size=tile_size, | |
nb_obj_dims=self.nb_obj_dims, | |
mask_unobserved=mask_unobserved | |
) | |
ymin = j * tile_size | |
ymax = (j+1) * tile_size | |
xmin = i * tile_size | |
xmax = (i+1) * tile_size | |
img[ymin:ymax, xmin:xmax, :] = tile_img | |
return img | |
def encode(self, vis_mask=None, absolute_coordinates=False): | |
""" | |
Produce a compact numpy encoding of the grid | |
""" | |
if vis_mask is None: | |
vis_mask = np.ones((self.width, self.height), dtype=bool) | |
array = np.zeros((self.width, self.height, self.nb_obj_dims), dtype='uint8') | |
for i in range(self.width): | |
for j in range(self.height): | |
if vis_mask[i, j]: | |
v = self.get(i, j) | |
if v is None: | |
array[i, j, 0] = OBJECT_TO_IDX['empty'] | |
array[i, j, 1:] = 0 | |
else: | |
array[i, j, :] = v.encode(nb_dims=self.nb_obj_dims, absolute_coordinates=absolute_coordinates) | |
return array | |
def decode(array): | |
""" | |
Decode an array grid encoding back into a grid | |
""" | |
width, height, channels = array.shape | |
assert channels in [5, 4, 3] | |
vis_mask = np.ones(shape=(width, height), dtype=np.bool) | |
grid = Grid(width, height, nb_obj_dims=channels) | |
for i in range(width): | |
for j in range(height): | |
if len(array[i, j]) == 3: | |
type_idx, color_idx, state = array[i, j] | |
else: | |
type_idx, color_idx, state, orient = array[i, j] | |
v = WorldObj.decode(type_idx, color_idx, state) | |
grid.set(i, j, v) | |
vis_mask[i, j] = (type_idx != OBJECT_TO_IDX['unseen']) | |
return grid, vis_mask | |
def process_vis(grid, agent_pos): | |
# mask = np.zeros(shape=(grid.width, grid.height), dtype=np.bool) | |
# | |
# mask[agent_pos[0], agent_pos[1]] = True | |
# | |
# for j in reversed(range(0, grid.height)): | |
# for i in range(0, grid.width-1): | |
# if not mask[i, j]: | |
# continue | |
# | |
# cell = grid.get(i, j) | |
# if cell and not cell.see_behind(): | |
# continue | |
# | |
# mask[i+1, j] = True | |
# if j > 0: | |
# mask[i+1, j-1] = True | |
# mask[i, j-1] = True | |
# | |
# for i in reversed(range(1, grid.width)): | |
# if not mask[i, j]: | |
# continue | |
# | |
# cell = grid.get(i, j) | |
# if cell and not cell.see_behind(): | |
# continue | |
# | |
# mask[i-1, j] = True | |
# if j > 0: | |
# mask[i-1, j-1] = True | |
# mask[i, j-1] = True | |
mask = np.ones(shape=(grid.width, grid.height), dtype=np.bool) | |
# handle frontal occlusions | |
# 45 deg | |
for j in reversed(range(0, agent_pos[1]+1)): | |
dy = abs(agent_pos[1] - j) | |
# in front of the agent | |
i = agent_pos[0] | |
cell = grid.get(i, j) | |
if (cell and not cell.see_behind()) or mask[i, j] == False: | |
if j < agent_pos[1] and j > 0: | |
# 45 deg | |
mask[i-1,j-1] = False | |
mask[i,j-1] = False | |
mask[i+1,j-1] = False | |
# agent -> to the left | |
for i in reversed(range(1, agent_pos[0])): | |
dx = abs(agent_pos[0] - i) | |
cell = grid.get(i, j) | |
if (cell and not cell.see_behind()) or mask[i,j] == False: | |
# angle | |
if dx >= dy: | |
mask[i - 1, j] = False | |
if j > 0: | |
mask[i - 1, j - 1] = False | |
if dy >= dx: | |
mask[i, j - 1] = False | |
# agent -> to the right | |
for i in range(agent_pos[0]+1, grid.width-1): | |
dx = abs(agent_pos[0] - i) | |
cell = grid.get(i, j) | |
if (cell and not cell.see_behind()) or mask[i,j] == False: | |
# angle | |
if dx >= dy: | |
mask[i + 1, j] = False | |
if j > 0: | |
mask[i + 1, j - 1] = False | |
if dy >= dx: | |
mask[i, j - 1] = False | |
# for i in range(0, grid.width): | |
# cell = grid.get(i, j) | |
# if (cell and not cell.see_behind()) or mask[i,j] == False: | |
# mask[i, j-1] = False | |
# grid | |
# for j in reversed(range(0, agent_pos[1]+1)): | |
# | |
# i = agent_pos[0] | |
# cell = grid.get(i, j) | |
# if (cell and not cell.see_behind()) or mask[i, j] == False: | |
# if j < agent_pos[1]: | |
# # grid | |
# mask[i,j-1] = False | |
# | |
# for i in reversed(range(1, agent_pos[0])): | |
# # agent -> to the left | |
# cell = grid.get(i, j) | |
# if (cell and not cell.see_behind()) or mask[i,j] == False: | |
# # grid | |
# mask[i-1, j] = False | |
# if j < agent_pos[1] and j > 0: | |
# mask[i, j-1] = False | |
# | |
# for i in range(agent_pos[0]+1, grid.width-1): | |
# # agent -> to the right | |
# cell = grid.get(i, j) | |
# if (cell and not cell.see_behind()) or mask[i,j] == False: | |
# # grid | |
# mask[i+1, j] = False | |
# if j < agent_pos[1] and j > 0: | |
# mask[i, j-1] = False | |
for j in range(0, grid.height): | |
for i in range(0, grid.width): | |
if not mask[i, j]: | |
grid.set(i, j, None) | |
return mask | |
class MiniGridEnv(gym.Env): | |
""" | |
2D grid world game environment | |
""" | |
metadata = { | |
'render.modes': ['human', 'rgb_array'], | |
'video.frames_per_second' : 10 | |
} | |
# Enumeration of possible actions | |
class Actions(IntEnum): | |
# Turn left, turn right, move forward | |
left = 0 | |
right = 1 | |
forward = 2 | |
# Pick up an object | |
pickup = 3 | |
# Drop an object | |
drop = 4 | |
# Toggle/activate an object | |
toggle = 5 | |
# Done completing task | |
done = 6 | |
def __init__( | |
self, | |
grid_size=None, | |
width=None, | |
height=None, | |
max_steps=100, | |
see_through_walls=False, | |
full_obs=False, | |
seed=None, | |
agent_view_size=7, | |
actions=None, | |
action_space=None, | |
add_npc_direction=False, | |
add_npc_point_direction=False, | |
add_npc_last_prim_action=False, | |
reward_diminish_factor=0.9, | |
egocentric_observation=True, | |
): | |
# sanity check params for SocialAI experiments | |
if "SocialAI" in type(self).__name__: | |
assert egocentric_observation | |
assert grid_size == 10 | |
assert not see_through_walls | |
assert max_steps == 80 | |
assert agent_view_size == 7 | |
assert not full_obs | |
assert add_npc_direction and add_npc_point_direction and add_npc_last_prim_action | |
self.egocentric_observation = egocentric_observation | |
if hasattr(self, "lever_active_steps"): | |
assert self.lever_active_steps == 10 | |
# Can't set both grid_size and width/height | |
if grid_size: | |
assert width == None and height == None | |
width = grid_size | |
height = grid_size | |
# Action enumeration for this environment | |
if actions: | |
self.actions = actions | |
else: | |
self.actions = MiniGridEnv.Actions | |
# Actions are discrete integer values | |
if action_space: | |
self.action_space = action_space | |
else: | |
self.action_space = spaces.MultiDiscrete([len(self.actions)]) | |
# Number of cells (width and height) in the agent view | |
assert agent_view_size % 2 == 1 | |
assert agent_view_size >= 3 | |
self.agent_view_size = agent_view_size | |
# Number of object dimensions (i.e. number of channels in symbolic image) | |
self.add_npc_direction = add_npc_direction | |
self.add_npc_point_direction = add_npc_point_direction | |
self.add_npc_last_prim_action = add_npc_last_prim_action | |
self.nb_obj_dims = 3 + 2*bool(not self.egocentric_observation) + int(self.add_npc_direction) + int(self.add_npc_point_direction) + int(self.add_npc_last_prim_action) | |
# Observations are dictionaries containing an | |
# encoding of the grid and a textual 'mission' string | |
self.observation_space = spaces.Box( | |
low=0, | |
high=255, | |
shape=(self.agent_view_size, self.agent_view_size, self.nb_obj_dims), | |
dtype='uint8' | |
) | |
self.observation_space = spaces.Dict({ | |
'image': self.observation_space | |
}) | |
# Range of possible rewards | |
self.reward_range = (0, 1) | |
# Window to use for human rendering mode | |
self.window = None | |
# Environment configuration | |
self.width = width | |
self.height = height | |
self.max_steps = max_steps | |
self.see_through_walls = see_through_walls | |
self.full_obs = full_obs | |
self.reward_diminish_factor = reward_diminish_factor | |
# Current position and direction of the agent | |
self.agent_pos = None | |
self.agent_dir = None | |
# Initialize the RNG | |
self.seed(seed=seed) | |
# Initialize the state | |
self.reset() | |
def reset(self): | |
# Current position and direction of the agent | |
self.agent_pos = None | |
self.agent_dir = None | |
# Generate a new random grid at the start of each episode | |
# To keep the same grid for each episode, call env.seed() with | |
# the same seed before calling env.reset() | |
self._gen_grid(self.width, self.height) | |
# These fields should be defined by _gen_grid | |
assert self.agent_pos is not None | |
assert self.agent_dir is not None | |
# Check that the agent doesn't overlap with an object | |
start_cell = self.grid.get(*self.agent_pos) | |
assert start_cell is None or start_cell.can_overlap() | |
# Item picked up, being carried, initially nothing | |
self.carrying = None | |
# Step count since episode start | |
self.step_count = 0 | |
# Return first observation | |
obs = self.gen_obs(full_obs=self.full_obs) | |
return obs | |
def reset_with_info(self, *args, **kwargs): | |
obs = self.reset(*args, **kwargs) | |
info = self.generate_info(done=False, reward=0) | |
return obs, info | |
def seed(self, seed=1337): | |
# Seed the random number generator | |
self.np_random, _ = seeding.np_random(seed) | |
return [seed] | |
def hash(self, size=16): | |
"""Compute a hash that uniquely identifies the current state of the environment. | |
:param size: Size of the hashing | |
""" | |
sample_hash = hashlib.sha256() | |
to_encode = [self.grid.encode(), self.agent_pos, self.agent_dir] | |
for item in to_encode: | |
sample_hash.update(str(item).encode('utf8')) | |
return sample_hash.hexdigest()[:size] | |
def steps_remaining(self): | |
return self.max_steps - self.step_count | |
def is_near(self, pos1, pos2): | |
ax, ay = pos1 | |
wx, wy = pos2 | |
if (ax == wx and abs(ay - wy) == 1) or (ay == wy and abs(ax - wx) == 1): | |
return True | |
return False | |
def get_cell(self, x, y): | |
return self.grid.get(x, y) | |
def __str__(self): | |
""" | |
Produce a pretty string of the environment's grid along with the agent. | |
A grid cell is represented by 2-character string, the first one for | |
the object and the second one for the color. | |
""" | |
# Map of object types to short string | |
OBJECT_TO_STR = { | |
'wall' : 'W', | |
'floor' : 'F', | |
'door' : 'D', | |
'key' : 'K', | |
'ball' : 'A', | |
'box' : 'B', | |
'goal' : 'G', | |
'lava' : 'V', | |
} | |
# Short string for opened door | |
OPENDED_DOOR_IDS = '_' | |
# Map agent's direction to short string | |
AGENT_DIR_TO_STR = { | |
0: '>', | |
1: 'V', | |
2: '<', | |
3: '^' | |
} | |
str = '' | |
for j in range(self.grid.height): | |
for i in range(self.grid.width): | |
if i == self.agent_pos[0] and j == self.agent_pos[1]: | |
str += 2 * AGENT_DIR_TO_STR[self.agent_dir] | |
continue | |
c = self.grid.get(i, j) | |
if c == None: | |
str += ' ' | |
continue | |
if c.type == 'door': | |
if c.is_open: | |
str += '__' | |
elif c.is_locked: | |
str += 'L' + c.color[0].upper() | |
else: | |
str += 'D' + c.color[0].upper() | |
continue | |
str += OBJECT_TO_STR[c.type] + c.color[0].upper() | |
if j < self.grid.height - 1: | |
str += '\n' | |
return str | |
def _gen_grid(self, width, height): | |
assert False, "_gen_grid needs to be implemented by each environment" | |
def _reward(self): | |
""" | |
Compute the reward to be given upon success | |
""" | |
return 1 - self.reward_diminish_factor * (self.step_count / self.max_steps) | |
def _rand_int(self, low, high): | |
""" | |
Generate random integer in [low,high[ | |
""" | |
return self.np_random.randint(low, high) | |
def _rand_float(self, low, high): | |
""" | |
Generate random float in [low,high[ | |
""" | |
return self.np_random.uniform(low, high) | |
def _rand_bool(self): | |
""" | |
Generate random boolean value | |
""" | |
return (self.np_random.randint(0, 2) == 0) | |
def _rand_elem(self, iterable): | |
""" | |
Pick a random element in a list | |
""" | |
lst = list(iterable) | |
idx = self._rand_int(0, len(lst)) | |
return lst[idx] | |
def _rand_subset(self, iterable, num_elems): | |
""" | |
Sample a random subset of distinct elements of a list | |
""" | |
lst = list(iterable) | |
assert num_elems <= len(lst) | |
out = [] | |
while len(out) < num_elems: | |
elem = self._rand_elem(lst) | |
lst.remove(elem) | |
out.append(elem) | |
return out | |
def _rand_color(self): | |
""" | |
Generate a random color name (string) | |
""" | |
return self._rand_elem(COLOR_NAMES) | |
def _rand_pos(self, xLow, xHigh, yLow, yHigh): | |
""" | |
Generate a random (x,y) position tuple | |
""" | |
return ( | |
self.np_random.randint(xLow, xHigh), | |
self.np_random.randint(yLow, yHigh) | |
) | |
def find_loc(self, | |
top=None, | |
size=None, | |
reject_fn=None, | |
max_tries=math.inf, | |
reject_agent_pos=True, | |
reject_taken_pos=True | |
): | |
""" | |
Place an object at an empty position in the grid | |
:param top: top-left position of the rectangle where to place | |
:param size: size of the rectangle where to place | |
:param reject_fn: function to filter out potential positions | |
""" | |
if top is None: | |
top = (0, 0) | |
else: | |
top = (max(top[0], 0), max(top[1], 0)) | |
if size is None: | |
size = (self.grid.width, self.grid.height) | |
num_tries = 0 | |
while True: | |
# This is to handle with rare cases where rejection sampling | |
# gets stuck in an infinite loop | |
if num_tries > max_tries: | |
raise RecursionError('rejection sampling failed in place_obj') | |
if num_tries % 10000 == 0 and num_tries > 0: | |
warnings.warn("num_tries = {}. This is probably an infinite loop. {}".format(num_tries, get_traceback())) | |
# warnings.warn("num_tries = {}. This is probably an infinite loop.".format(num_tries)) | |
exit() | |
break | |
num_tries += 1 | |
pos = np.array(( | |
self._rand_int(top[0], min(top[0] + size[0], self.grid.width)), | |
self._rand_int(top[1], min(top[1] + size[1], self.grid.height)) | |
)) | |
# Don't place the object on top of another object | |
if reject_taken_pos: | |
if self.grid.get(*pos) != None: | |
continue | |
# Don't place the object where the agent is | |
if reject_agent_pos and np.array_equal(pos, self.agent_pos): | |
continue | |
# Check if there is a filtering criterion | |
if reject_fn and reject_fn(self, pos): | |
continue | |
break | |
return pos | |
def place_obj(self, | |
obj, | |
top=None, | |
size=None, | |
reject_fn=None, | |
max_tries=math.inf | |
): | |
""" | |
Place an object at an empty position in the grid | |
:param top: top-left position of the rectangle where to place | |
:param size: size of the rectangle where to place | |
:param reject_fn: function to filter out potential positions | |
""" | |
# if top is None: | |
# top = (0, 0) | |
# else: | |
# top = (max(top[0], 0), max(top[1], 0)) | |
# | |
# if size is None: | |
# size = (self.grid.width, self.grid.height) | |
# | |
# num_tries = 0 | |
# | |
# while True: | |
# # This is to handle with rare cases where rejection sampling | |
# # gets stuck in an infinite loop | |
# if num_tries > max_tries: | |
# raise RecursionError('rejection sampling failed in place_obj') | |
# | |
# num_tries += 1 | |
# | |
# pos = np.array(( | |
# self._rand_int(top[0], min(top[0] + size[0], self.grid.width)), | |
# self._rand_int(top[1], min(top[1] + size[1], self.grid.height)) | |
# )) | |
# | |
# # Don't place the object on top of another object | |
# if self.grid.get(*pos) != None: | |
# continue | |
# | |
# # Don't place the object where the agent is | |
# if np.array_equal(pos, self.agent_pos): | |
# continue | |
# | |
# # Check if there is a filtering criterion | |
# if reject_fn and reject_fn(self, pos): | |
# continue | |
# | |
# break | |
# | |
# self.grid.set(*pos, obj) | |
# | |
# if obj is not None: | |
# obj.init_pos = pos | |
# obj.cur_pos = pos | |
# | |
# return pos | |
pos = self.find_loc( | |
top=top, | |
size=size, | |
reject_fn=reject_fn, | |
max_tries=max_tries | |
) | |
if obj is None: | |
self.grid.set(*pos, obj) | |
else: | |
self.put_obj_np(obj, pos) | |
return pos | |
def put_obj_np(self, obj, pos): | |
""" | |
Put an object at a specific position in the grid | |
""" | |
assert isinstance(pos, np.ndarray) | |
i, j = pos | |
cell = self.grid.get(i, j) | |
if cell is not None: | |
raise ValueError("trying to put {} on {}".format(obj, cell)) | |
self.grid.set(i, j, obj) | |
obj.init_pos = np.array((i, j)) | |
obj.cur_pos = np.array((i, j)) | |
def put_obj(self, obj, i, j): | |
""" | |
Put an object at a specific position in the grid | |
""" | |
warnings.warn( | |
"This function is kept for backwards compatiblity with minigrid. It is recommended to use put_object_np()." | |
) | |
raise DeprecationWarning("Deprecated use put_obj_np. (or remove this Warning)") | |
self.grid.set(i, j, obj) | |
obj.init_pos = (i, j) | |
obj.cur_pos = (i, j) | |
def place_agent( | |
self, | |
top=None, | |
size=None, | |
rand_dir=True, | |
max_tries=math.inf | |
): | |
""" | |
Set the agent's starting point at an empty position in the grid | |
""" | |
self.agent_pos = None | |
pos = self.place_obj(None, top, size, max_tries=max_tries) | |
self.agent_pos = pos | |
if rand_dir: | |
self.agent_dir = self._rand_int(0, 4) | |
return pos | |
def dir_vec(self): | |
""" | |
Get the direction vector for the agent, pointing in the direction | |
of forward movement. | |
""" | |
assert self.agent_dir >= 0 and self.agent_dir < 4 | |
return DIR_TO_VEC[self.agent_dir] | |
def right_vec(self): | |
""" | |
Get the vector pointing to the right of the agent. | |
""" | |
dx, dy = self.dir_vec | |
return np.array((-dy, dx)) | |
def front_pos(self): | |
""" | |
Get the position of the cell that is right in front of the agent | |
""" | |
return self.agent_pos + self.dir_vec | |
def back_pos(self): | |
""" | |
Get the position of the cell that is right in front of the agent | |
""" | |
return self.agent_pos - self.dir_vec | |
def right_pos(self): | |
""" | |
Get the position of the cell that is right in front of the agent | |
""" | |
return self.agent_pos + self.right_vec | |
def left_pos(self): | |
""" | |
Get the position of the cell that is right in front of the agent | |
""" | |
return self.agent_pos - self.right_vec | |
def get_view_coords(self, i, j): | |
""" | |
Translate and rotate absolute grid coordinates (i, j) into the | |
agent's partially observable view (sub-grid). Note that the resulting | |
coordinates may be negative or outside of the agent's view size. | |
""" | |
ax, ay = self.agent_pos | |
dx, dy = self.dir_vec | |
rx, ry = self.right_vec | |
# Compute the absolute coordinates of the top-left view corner | |
sz = self.agent_view_size | |
hs = self.agent_view_size // 2 | |
tx = ax + (dx * (sz-1)) - (rx * hs) | |
ty = ay + (dy * (sz-1)) - (ry * hs) | |
lx = i - tx | |
ly = j - ty | |
# Project the coordinates of the object relative to the top-left | |
# corner onto the agent's own coordinate system | |
vx = (rx*lx + ry*ly) | |
vy = -(dx*lx + dy*ly) | |
return vx, vy | |
def get_view_exts(self, dir=None, view_size=None, pos=None): | |
""" | |
Get the extents of the square set of tiles visible to the agent (or to an npc if specified | |
Note: the bottom extent indices are not included in the set | |
""" | |
# by default compute view exts for agent | |
if (dir is None) and (view_size is None) and (pos is None): | |
dir = self.agent_dir | |
view_size = self.agent_view_size | |
pos = self.agent_pos | |
# Facing right | |
if dir == 0: | |
topX = pos[0] | |
topY = pos[1] - view_size // 2 | |
# Facing down | |
elif dir == 1: | |
topX = pos[0] - view_size // 2 | |
topY = pos[1] | |
# Facing left | |
elif dir == 2: | |
topX = pos[0] - view_size + 1 | |
topY = pos[1] - view_size // 2 | |
# Facing up | |
elif dir == 3: | |
topX = pos[0] - view_size // 2 | |
topY = pos[1] - view_size + 1 | |
else: | |
assert False, "invalid agent direction: {}".format(dir) | |
botX = topX + view_size | |
botY = topY + view_size | |
return (topX, topY, botX, botY) | |
def relative_coords(self, x, y): | |
""" | |
Check if a grid position belongs to the agent's field of view, and returns the corresponding coordinates | |
""" | |
vx, vy = self.get_view_coords(x, y) | |
if vx < 0 or vy < 0 or vx >= self.agent_view_size or vy >= self.agent_view_size: | |
return None | |
return vx, vy | |
def in_view(self, x, y): | |
""" | |
check if a grid position is visible to the agent | |
""" | |
return self.relative_coords(x, y) is not None | |
def agent_sees(self, x, y): | |
""" | |
Check if a non-empty grid position is visible to the agent | |
""" | |
coordinates = self.relative_coords(x, y) | |
if coordinates is None: | |
return False | |
vx, vy = coordinates | |
assert not self.full_obs, "agent sees function not implemented with full_obs" | |
obs = self.gen_obs() | |
obs_grid, _ = Grid.decode(obs['image']) | |
obs_cell = obs_grid.get(vx, vy) | |
world_cell = self.grid.get(x, y) | |
return obs_cell is not None and obs_cell.type == world_cell.type | |
def step(self, action): | |
self.step_count += 1 | |
reward = 0 | |
done = False | |
# Get the position in front of the agent | |
fwd_pos = self.front_pos | |
# Get the contents of the cell in front of the agent | |
fwd_cell = self.grid.get(*fwd_pos) | |
# Rotate left | |
if action == self.actions.left: | |
self.agent_dir -= 1 | |
if self.agent_dir < 0: | |
self.agent_dir += 4 | |
# Rotate right | |
elif action == self.actions.right: | |
self.agent_dir = (self.agent_dir + 1) % 4 | |
# Move forward | |
elif action == self.actions.forward: | |
if fwd_cell != None and fwd_cell.can_push(): | |
fwd_cell.push(push_dir=self.agent_dir, pusher="agent") | |
if fwd_cell == None or fwd_cell.can_overlap(): | |
self.agent_pos = fwd_pos | |
if fwd_cell != None and fwd_cell.type == 'goal': | |
done = True | |
reward = self._reward() | |
if fwd_cell != None and fwd_cell.type == 'lava': | |
done = True | |
# Pick up an object | |
elif hasattr(self.actions, "pickup") and action == self.actions.pickup: | |
if fwd_cell and fwd_cell.can_pickup(): | |
if self.carrying is None: | |
self.carrying = fwd_cell | |
self.carrying.cur_pos = np.array([-1, -1]) | |
self.grid.set(*fwd_pos, None) | |
# Drop an object | |
elif hasattr(self.actions, "drop") and action == self.actions.drop: | |
if not fwd_cell and self.carrying: | |
self.grid.set(*fwd_pos, self.carrying) | |
self.carrying.cur_pos = fwd_pos | |
self.carrying = None | |
# Toggle/activate an object | |
elif action == self.actions.toggle: | |
if fwd_cell: | |
fwd_cell.toggle(self, fwd_pos) | |
# Done action (not used by default) | |
elif action == self.actions.done: | |
pass | |
elif action in map(int, self.actions): | |
# action that was added in an inheriting class (ex. talk action) | |
pass | |
elif np.isnan(action): | |
# action skip | |
pass | |
else: | |
assert False, f"unknown action {action}" | |
if self.step_count >= self.max_steps: | |
done = True | |
obs = self.gen_obs(full_obs=self.full_obs) | |
info = self.generate_info(done, reward) | |
return obs, reward, done, info | |
def generate_info(self, done, reward): | |
success = done and reward > 0 | |
info = {"success": success} | |
gen_extra_info_dict = self.gen_extra_info() # add stuff needed for textual observations here | |
assert not any(item in info for item in gen_extra_info_dict), "Duplicate keys found with gen_extra_info" | |
info = { | |
**info, | |
**gen_extra_info_dict, | |
} | |
return info | |
def gen_extra_info(self): | |
grid, vis_mask = self.gen_obs_grid() | |
carrying = self.carrying | |
agent_pos_vx, agent_pos_vy = self.get_view_coords(self.agent_pos[0], self.agent_pos[1]) | |
npc_actions_dict = SocialAINPCActionsDict | |
extra_info = { | |
"image": grid.encode(vis_mask), | |
"vis_mask": vis_mask, | |
"carrying": carrying, | |
"agent_pos_vx": agent_pos_vx, | |
"agent_pos_vy": agent_pos_vy, | |
"npc_actions_dict": npc_actions_dict | |
} | |
return extra_info | |
def gen_obs_grid(self): | |
""" | |
Generate the sub-grid observed by the agent. | |
This method also outputs a visibility mask telling us which grid | |
cells the agent can actually see. | |
""" | |
topX, topY, botX, botY = self.get_view_exts() | |
grid = self.grid.slice(topX, topY, self.agent_view_size, self.agent_view_size) | |
for i in range(self.agent_dir + 1): | |
grid = grid.rotate_left() | |
# Process occluders and visibility | |
# Note that this incurs some performance cost | |
if not self.see_through_walls: | |
vis_mask = grid.process_vis(agent_pos=(self.agent_view_size // 2, self.agent_view_size - 1)) | |
else: | |
vis_mask = np.ones(shape=(grid.width, grid.height), dtype=np.bool) | |
# Make it so the agent sees what it's carrying | |
# We do this by placing the carried object at the agent's position | |
# in the agent's partially observable view | |
agent_pos = grid.width // 2, grid.height - 1 | |
if self.carrying: | |
grid.set(*agent_pos, self.carrying) | |
else: | |
grid.set(*agent_pos, None) | |
return grid, vis_mask | |
def add_agent_to_grid(self, image): | |
""" | |
Add agent to symbolic pixel image, used only for full observation | |
""" | |
ax, ay = self.agent_pos | |
image[ax,ay] = [9,9,9,self.agent_dir] # could be made cleaner by creating an Agent_id (here we use Lava_id) | |
return image | |
def gen_obs(self, full_obs=False): | |
""" | |
Generate the agent's view (partially observable, low-resolution encoding) | |
Fully observable view can be returned when full_obs is set to True | |
""" | |
if full_obs: | |
image = self.add_agent_to_grid(self.grid.encode()) | |
else: | |
grid, vis_mask = self.gen_obs_grid() | |
# Encode the partially observable view into a numpy array | |
image = grid.encode(vis_mask, absolute_coordinates=not self.egocentric_observation) | |
assert hasattr(self, 'mission'), "environments must define a textual mission string" | |
# Observations are dictionaries containing: | |
# - an image (partially observable view of the environment) | |
# - the agent's direction/orientation (acting as a compass) | |
# - a textual mission string (instructions for the agent) | |
obs = { | |
'image': image, | |
'direction': self.agent_dir, | |
'mission': self.mission | |
} | |
return obs | |
def get_obs_render(self, obs, tile_size=TILE_PIXELS//2): | |
""" | |
Render an agent observation for visualization | |
""" | |
grid, vis_mask = Grid.decode(obs) | |
# Render the whole grid | |
img = grid.render( | |
tile_size, | |
agent_pos=(self.agent_view_size // 2, self.agent_view_size - 1), | |
agent_dir=3, | |
highlight_mask=vis_mask | |
) | |
return img | |
def render(self, mode='human', close=False, highlight=True, tile_size=TILE_PIXELS, mask_unobserved=False): | |
""" | |
Render the whole-grid human view | |
""" | |
if mode == 'human' and close: | |
if self.window: | |
self.window.close() | |
return | |
if mode == 'human' and not self.window: | |
import gym_minigrid.window | |
self.window = gym_minigrid.window.Window('gym_minigrid') | |
self.window.show(block=False) | |
# Compute which cells are visible to the agent | |
_, vis_mask = self.gen_obs_grid() | |
# Compute the world coordinates of the bottom-left corner | |
# of the agent's view area | |
f_vec = self.dir_vec | |
r_vec = self.right_vec | |
top_left = self.agent_pos + f_vec * (self.agent_view_size-1) - r_vec * (self.agent_view_size // 2) | |
# Mask of which cells to highlight | |
highlight_mask = np.zeros(shape=(self.width, self.height), dtype=np.bool) | |
# For each cell in the visibility mask | |
for vis_j in range(0, self.agent_view_size): | |
for vis_i in range(0, self.agent_view_size): | |
# If this cell is not visible, don't highlight it | |
if not vis_mask[vis_i, vis_j]: | |
continue | |
# Compute the world coordinates of this cell | |
abs_i, abs_j = top_left - (f_vec * vis_j) + (r_vec * vis_i) | |
if abs_i < 0 or abs_i >= self.width: | |
continue | |
if abs_j < 0 or abs_j >= self.height: | |
continue | |
# Mark this cell to be highlighted | |
highlight_mask[abs_i, abs_j] = True | |
# Render the whole grid | |
img = self.grid.render( | |
tile_size, | |
self.agent_pos, | |
self.agent_dir, | |
highlight_mask=highlight_mask if highlight else None, | |
mask_unobserved=mask_unobserved | |
) | |
if mode == 'human': | |
# self.window.set_caption(self.mission) | |
self.window.show_img(img) | |
return img | |
def get_mission(self): | |
return self.mission | |
def close(self): | |
if self.window: | |
self.window.close() | |
return | |
def gen_text_obs(self): | |
grid, vis_mask = self.gen_obs_grid() | |
# Encode the partially observable view into a numpy array | |
image = grid.encode(vis_mask) | |
# (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color], state) | |
# State, 0: open, 1: closed, 2: locked | |
IDX_TO_COLOR = dict(zip(COLOR_TO_IDX.values(), COLOR_TO_IDX.keys())) | |
IDX_TO_OBJECT = dict(zip(OBJECT_TO_IDX.values(), OBJECT_TO_IDX.keys())) | |
list_textual_descriptions = [] | |
if self.carrying is not None: | |
list_textual_descriptions.append("You carry a {} {}".format(self.carrying.color, self.carrying.type)) | |
agent_pos_vx, agent_pos_vy = self.get_view_coords(self.agent_pos[0], self.agent_pos[1]) | |
view_field_dictionary = dict() | |
for i in range(image.shape[0]): | |
for j in range(image.shape[1]): | |
if image[i][j][0] != 0 and image[i][j][0] != 1 and image[i][j][0] != 2: | |
if i not in view_field_dictionary.keys(): | |
view_field_dictionary[i] = dict() | |
view_field_dictionary[i][j] = image[i][j] | |
else: | |
view_field_dictionary[i][j] = image[i][j] | |
# Find the wall if any | |
# We describe a wall only if there is no objects between the agent and the wall in straight line | |
# Find wall in front | |
add_wall_descr = False | |
if add_wall_descr: | |
j = agent_pos_vy - 1 | |
object_seen = False | |
while j >= 0 and not object_seen: | |
if image[agent_pos_vx][j][0] != 0 and image[agent_pos_vx][j][0] != 1: | |
if image[agent_pos_vx][j][0] == 2: | |
list_textual_descriptions.append( | |
f"A wall is {agent_pos_vy - j} steps in front of you. \n") # forward | |
object_seen = True | |
else: | |
object_seen = True | |
j -= 1 | |
# Find wall left | |
i = agent_pos_vx - 1 | |
object_seen = False | |
while i >= 0 and not object_seen: | |
if image[i][agent_pos_vy][0] != 0 and image[i][agent_pos_vy][0] != 1: | |
if image[i][agent_pos_vy][0] == 2: | |
list_textual_descriptions.append( | |
f"A wall is {agent_pos_vx - i} steps to the left. \n") # left | |
object_seen = True | |
else: | |
object_seen = True | |
i -= 1 | |
# Find wall right | |
i = agent_pos_vx + 1 | |
object_seen = False | |
while i < image.shape[0] and not object_seen: | |
if image[i][agent_pos_vy][0] != 0 and image[i][agent_pos_vy][0] != 1: | |
if image[i][agent_pos_vy][0] == 2: | |
list_textual_descriptions.append( | |
f"A wall is {i - agent_pos_vx} steps to the right. \n") # right | |
object_seen = True | |
else: | |
object_seen = True | |
i += 1 | |
# list_textual_descriptions.append("You see the following objects: ") | |
# returns the position of seen objects relative to you | |
for i in view_field_dictionary.keys(): | |
for j in view_field_dictionary[i].keys(): | |
if i != agent_pos_vx or j != agent_pos_vy: | |
object = view_field_dictionary[i][j] | |
front_dist = agent_pos_vy - j | |
left_right_dist = i-agent_pos_vx | |
loc_descr = "" | |
if front_dist == 1 and left_right_dist == 0: | |
loc_descr += "Right in front of you " | |
elif left_right_dist == 1 and front_dist == 0: | |
loc_descr += "Just to the right of you" | |
elif left_right_dist == -1 and front_dist == 0: | |
loc_descr += "Just to the left of you" | |
else: | |
front_str = str(front_dist)+" steps in front of you " if front_dist > 0 else "" | |
loc_descr += front_str | |
suff = "s" if abs(left_right_dist) > 0 else "" | |
and_ = "and" if loc_descr != "" else "" | |
if left_right_dist < 0: | |
left_right_str = f"{and_} {-left_right_dist} step{suff} to the left" | |
loc_descr += left_right_str | |
elif left_right_dist > 0: | |
left_right_str = f"{and_} {left_right_dist} step{suff} to the right" | |
loc_descr += left_right_str | |
else: | |
left_right_str = "" | |
loc_descr += left_right_str | |
loc_descr += f" there is a " | |
obj_type = IDX_TO_OBJECT[object[0]] | |
if obj_type == "npc": | |
IDX_TO_STATE = {0: 'friendly', 1: 'antagonistic'} | |
description = f"{IDX_TO_STATE[object[2]]} {IDX_TO_COLOR[object[1]]} peer. " | |
# gaze | |
gaze_dir = { | |
0: "towards you", | |
1: "to the left of you", | |
2: "in the same direction as you", | |
3: "to the right of you", | |
} | |
description += f"It is looking {gaze_dir[object[3]]}. " | |
# point | |
point_dir = { | |
0: "towards you", | |
1: "to the left of you", | |
2: "in the same direction as you", | |
3: "to the right of you", | |
} | |
if object[4] != 255: | |
description += f"It is pointing {point_dir[object[4]]}. " | |
# last action | |
last_action = {v: k for k, v in SocialAINPCActionsDict.items()}[object[5]] | |
last_action = { | |
"go_forward": "foward", | |
"rotate_left": "turn left", | |
"rotate_right": "turn right", | |
"toggle_action": "toggle", | |
"point_stop_point": "stop pointing", | |
"point_E": "", | |
"point_S": "", | |
"point_W": "", | |
"point_N": "", | |
"stop_point": "stop pointing", | |
"no_op": "" | |
}[last_action] | |
if last_action not in ["no_op", ""]: | |
description += f"It's last action is {last_action}. " | |
elif obj_type in ["switch", "apple", "generatorplatform", "marble", "marbletee", "fence"]: | |
if obj_type == "switch": | |
# assumes that Switch.no_light == True | |
assert object[-1] == 0 | |
description = f"{IDX_TO_COLOR[object[1]]} {IDX_TO_OBJECT[object[0]]} " | |
assert object[2:].mean() == 0 | |
elif obj_type == "lockablebox": | |
IDX_TO_STATE = {0: 'open', 1: 'closed', 2: 'locked'} | |
description = f"{IDX_TO_STATE[object[2]]} {IDX_TO_COLOR[object[1]]} {IDX_TO_OBJECT[object[0]]} " | |
assert object[3:].mean() == 0 | |
elif obj_type == "applegenerator": | |
IDX_TO_STATE = {1: 'square', 2: 'round'} | |
description = f"{IDX_TO_STATE[object[2]]} {IDX_TO_COLOR[object[1]]} {IDX_TO_OBJECT[object[0]]} " | |
assert object[3:].mean() == 0 | |
elif obj_type == "remotedoor": | |
IDX_TO_STATE = {0: 'open', 1: 'closed'} | |
description = f"{IDX_TO_STATE[object[2]]} {IDX_TO_COLOR[object[1]]} {IDX_TO_OBJECT[object[0]]} " | |
assert object[3:].mean() == 0 | |
elif obj_type == "door": | |
IDX_TO_STATE = {0: 'open', 1: 'closed', 2: 'locked'} | |
description = f"{IDX_TO_STATE[object[2]]} {IDX_TO_COLOR[object[1]]} {IDX_TO_OBJECT[object[0]]} " | |
assert object[3:].mean() == 0 | |
elif obj_type == "lever": | |
IDX_TO_STATE = {1: 'activated', 0: 'unactivated'} | |
if object[3] == 255: | |
countdown_txt = "" | |
else: | |
countdown_txt = f"with {object[3]} timesteps left. " | |
description = f"{IDX_TO_STATE[object[2]]} {IDX_TO_COLOR[object[1]]} {IDX_TO_OBJECT[object[0]]} {countdown_txt}" | |
assert object[4:].mean() == 0 | |
else: | |
raise ValueError(f"Undefined object type {obj_type}") | |
full_destr = loc_descr + description + "\n" | |
list_textual_descriptions.append(full_destr) | |
if len(list_textual_descriptions) == 0: | |
list_textual_descriptions.append("\n") | |
return {'descriptions': list_textual_descriptions} | |
class MultiModalMiniGridEnv(MiniGridEnv): | |
grammar = None | |
def reset(self, *args, **kwargs): | |
obs = super().reset() | |
self.append_existing_utterance_to_history() | |
obs = self.add_utterance_to_observation(obs) | |
self.reset_utterance() | |
return obs | |
def append_existing_utterance_to_history(self): | |
if self.utterance != self.empty_symbol: | |
if self.utterance.startswith(self.empty_symbol): | |
self.utterance_history += self.utterance[len(self.empty_symbol):] | |
else: | |
assert self.utterance == self.beginning_string | |
self.utterance_history += self.utterance | |
def add_utterance_to_observation(self, obs): | |
obs["utterance"] = self.utterance | |
obs["utterance_history"] = self.utterance_history | |
obs["mission"] = "Hidden" | |
return obs | |
def reset_utterance(self): | |
# set utterance to empty indicator | |
self.utterance = self.empty_symbol | |
def render(self, *args, show_dialogue=True, **kwargs): | |
obs = super().render(*args, **kwargs) | |
if args[0] == 'human': | |
# draw text to the side of the image | |
self.window.clear_text() # erase previous text | |
if show_dialogue: | |
self.window.set_caption(self.full_conversation) | |
# self.window.ax.set_title("correct color: {}".format(self.box.target_color), loc="left", fontsize=10) | |
if self.outcome_info: | |
color = None | |
if "SUCCESS" in self.outcome_info: | |
color = "lime" | |
elif "FAILURE" in self.outcome_info: | |
color = "red" | |
self.window.add_text(*(0.01, 0.85, self.outcome_info), | |
**{'fontsize': 15, 'color': color, 'weight': "bold"}) | |
self.window.show_img(obs) # re-draw image to add changes to window | |
return obs | |
def add_obstacles(self): | |
self.obstacles = self.parameters.get("Obstacles", "No") if self.parameters else "No" | |
if self.obstacles != "No": | |
n_stumps_range = { | |
"A_bit": (1, 2), | |
"Medium": (3, 4), | |
"A_lot": (5, 6), | |
}[self.obstacles] | |
n_stumps = random.randint(*n_stumps_range) | |
for _ in range(n_stumps): | |
self.wall_start_x = self._rand_int(1, self.current_width - 2) | |
self.wall_start_y = self._rand_int(1, self.current_height - 2) | |
if random.choice([True, False]): | |
self.grid.horz_wall( | |
x=self.wall_start_x, | |
y=self.wall_start_y, | |
length=1 | |
) | |
else: | |
self.grid.horz_wall( | |
x=self.wall_start_x, | |
y=self.wall_start_y, | |
length=1 | |
) |