grg's picture
Cleaned old git history
be5548b
raw
history blame
110 kB
import math
import random
import hashlib
import gym
from enum import IntEnum
import numpy as np
from gym import error, spaces, utils
from gym.utils import seeding
from .rendering import *
from abc import ABC, abstractmethod
import warnings
import astar
import traceback
import warnings
from functools import wraps
SocialAINPCActionsDict = {
"go_forward": 0,
"rotate_left": 1,
"rotate_right": 2,
"toggle_action": 3,
"point_stop_point": 4,
"point_E": 5,
"point_S": 6,
"point_W": 7,
"point_N": 8,
"stop_point": 9,
"no_op": 10
}
point_dir_encoding = {
"point_E": 0,
"point_S": 1,
"point_W": 2,
"point_N": 3,
}
def get_traceback():
tb = traceback.extract_stack()
return "".join(traceback.format_list(tb)[:-1])
# Size in pixels of a tile in the full-scale human view
TILE_PIXELS = 32
# Map of color names to RGB values
COLORS = {
'red' : np.array([255, 0, 0]),
'green' : np.array([0, 255, 0]),
'blue' : np.array([0, 0, 255]),
'purple': np.array([112, 39, 195]),
'yellow': np.array([255, 255, 0]),
'grey' : np.array([100, 100, 100]),
'brown': np.array([82, 36, 19])
}
COLOR_NAMES = sorted(list(COLORS.keys()))
# Used to map colors to integers
COLOR_TO_IDX = {
'red' : 0,
'green' : 1,
'blue' : 2,
'purple': 3,
'yellow': 4,
'grey' : 5,
'brown' : 6,
}
IDX_TO_COLOR = dict(zip(COLOR_TO_IDX.values(), COLOR_TO_IDX.keys()))
# Map of object type to integers
OBJECT_TO_IDX = {
'unseen' : 0,
'empty' : 1,
'wall' : 2,
'floor' : 3,
'door' : 4,
'key' : 5,
'ball' : 6,
'box' : 7,
'goal' : 8,
'lava' : 9,
'agent' : 10,
'npc' : 11,
'switch' : 12,
'lockablebox' : 13,
'apple' : 14,
'applegenerator' : 15,
'generatorplatform': 16,
'marble' : 17,
'marbletee' : 18,
'fence' : 19,
'remotedoor' : 20,
'lever' : 21,
}
IDX_TO_OBJECT = dict(zip(OBJECT_TO_IDX.values(), OBJECT_TO_IDX.keys()))
# Map of state names to integers
STATE_TO_IDX = {
'open' : 0,
'closed': 1,
'locked': 2,
}
# Map of agent direction indices to vectors
DIR_TO_VEC = [
# Pointing right (positive X)
np.array((1, 0)),
# Down (positive Y)
np.array((0, 1)),
# Pointing left (negative X)
np.array((-1, 0)),
# Up (negative Y)
np.array((0, -1)),
]
class WorldObj:
"""
Base class for grid world objects
"""
def __init__(self, type, color):
assert type in OBJECT_TO_IDX, type
assert color in COLOR_TO_IDX, color
self.type = type
self.color = color
self.contains = None
# Initial position of the object
self.init_pos = None
# Current position of the object
self.cur_pos = np.array((0, 0))
def can_overlap(self):
"""Can the agent overlap with this?"""
return False
def can_push(self):
"""Can the agent push the object?"""
return False
def can_pickup(self):
"""Can the agent pick this up?"""
return False
def can_contain(self):
"""Can this contain another object?"""
return False
def see_behind(self):
"""Can the agent see behind this object?"""
return True
def toggle(self, env, pos):
"""Method to trigger/toggle an action this object performs"""
return False
def encode(self, nb_dims=3, absolute_coordinates=False):
"""Encode the a description of this object as a nb_dims-tuple of integers"""
if absolute_coordinates:
core = (OBJECT_TO_IDX[self.type], *self.cur_pos, COLOR_TO_IDX[self.color])
else:
core = (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color])
return core + (0,) * (nb_dims - len(core))
def cache(self, *args, **kwargs):
"""Used for cached rendering."""
return self.encode(*args, **kwargs)
@staticmethod
def decode(type_idx, color_idx, state):
"""Create an object from a 3-tuple state description"""
obj_type = IDX_TO_OBJECT[type_idx]
color = IDX_TO_COLOR[color_idx]
if obj_type == 'empty' or obj_type == 'unseen':
return None
if obj_type == 'wall':
v = Wall(color)
elif obj_type == 'floor':
v = Floor(color)
elif obj_type == 'ball':
v = Ball(color)
elif obj_type == 'marble':
v = Marble(color)
elif obj_type == 'apple':
eaten = state == 1
v = Apple(color, eaten=eaten)
elif obj_type == 'apple_generator':
is_pressed = state == 2
v = AppleGenerator(color, is_pressed=is_pressed)
elif obj_type == 'key':
v = Key(color)
elif obj_type == 'box':
v = Box(color)
elif obj_type == 'lockablebox':
is_locked = state == 2
v = LockableBox(color, is_locked=is_locked)
elif obj_type == 'door':
# State, 0: open, 1: closed, 2: locked
is_open = state == 0
is_locked = state == 2
v = Door(color, is_open, is_locked)
elif obj_type == 'remotedoor':
# State, 0: open, 1: closed
is_open = state == 0
v = RemoteDoor(color, is_open)
elif obj_type == 'goal':
v = Goal()
elif obj_type == 'lava':
v = Lava()
elif obj_type == 'fence':
v = Fence()
elif obj_type == 'switch':
v = Switch(color, is_on=state)
elif obj_type == 'lever':
v = Lever(color, is_on=state)
elif obj_type == 'npc':
warnings.warn("NPC's internal state cannot be decoded. Only the icon is shown.")
v = NPC(color)
v.npc_type=0
else:
assert False, "unknown object type in decode '%s'" % obj_type
return v
def render(self, r):
"""Draw this object with the given renderer"""
raise NotImplementedError
class BlockableWorldObj(WorldObj):
def __init__(self, type, color, block_set):
super(BlockableWorldObj, self).__init__(type, color)
self.block_set = block_set
self.blocked = False
def can_push(self):
return True
def push(self, *args, **kwargs):
return self.block_block_set()
def toggle(self, *args, **kwargs):
return self.block_block_set()
def block_block_set(self):
"""A function that blocks the block set"""
if not self.blocked:
if self.block_set is not None:
# cprint("BLOCKED!", "red")
for e in self.block_set:
e.block()
return True
else:
return False
def block(self):
self.blocked = True
class Goal(WorldObj):
def __init__(self):
super().__init__('goal', 'green')
def can_overlap(self):
return True
def render(self, img):
fill_coords(img, point_in_rect(0, 1, 0, 1), COLORS[self.color])
class Floor(WorldObj):
"""
Colored floor tile the agent can walk over
"""
def __init__(self, color='blue'):
super().__init__('floor', color)
def can_overlap(self):
return True
def render(self, img):
# Give the floor a pale color
color = COLORS[self.color] / 2
fill_coords(img, point_in_rect(0.031, 1, 0.031, 1), color)
class Lava(WorldObj):
def __init__(self):
super().__init__('lava', 'red')
def can_overlap(self):
return True
def render(self, img):
c = (255, 128, 0)
# Background color
fill_coords(img, point_in_rect(0, 1, 0, 1), c)
# Little waves
for i in range(3):
ylo = 0.3 + 0.2 * i
yhi = 0.4 + 0.2 * i
fill_coords(img, point_in_line(0.1, ylo, 0.3, yhi, r=0.03), (0,0,0))
fill_coords(img, point_in_line(0.3, yhi, 0.5, ylo, r=0.03), (0,0,0))
fill_coords(img, point_in_line(0.5, ylo, 0.7, yhi, r=0.03), (0,0,0))
fill_coords(img, point_in_line(0.7, yhi, 0.9, ylo, r=0.03), (0,0,0))
class Fence(WorldObj):
"""
Same as Lava but can't overlap.
"""
def __init__(self):
super().__init__('fence', 'grey')
def can_overlap(self):
return False
def render(self, img):
c = COLORS[self.color]
# ugly fence
fill_coords(img, point_in_rect(
0.1, 0.9, 0.5, 0.9
# (0.15, 0.9),
# (0.10, 0.5),
# (0.95, 0.9),
# (0.90, 0.5),
# (0.10, 0.9),
# (0.10, 0.5),
# (0.95, 0.9),
# (0.95, 0.5),
), c)
fill_coords(img, point_in_quadrangle(
# (0.15, 0.9),
# (0.10, 0.5),
# (0.95, 0.9),
# (0.90, 0.5),
(0.10, 0.9),
(0.10, 0.5),
(0.95, 0.9),
(0.95, 0.5),
), c)
return
# preety fence
fill_coords(img, point_in_quadrangle(
(0.15, 0.3125),
(0.15, 0.4125),
(0.85, 0.4875),
(0.85, 0.5875),
), c)
# h2
fill_coords(img, point_in_quadrangle(
(0.15, 0.6125),
(0.15, 0.7125),
(0.85, 0.7875),
(0.85, 0.8875),
), c)
# vm
fill_coords(img, point_in_quadrangle(
(0.45, 0.2875),
(0.45, 0.8875),
(0.55, 0.3125),
(0.55, 0.9125),
), c)
fill_coords(img, point_in_triangle(
(0.45, 0.2875),
(0.55, 0.3125),
(0.5, 0.25),
), c)
# vl
fill_coords(img, point_in_quadrangle(
(0.25, 0.2375),
(0.25, 0.8375),
(0.35, 0.2625),
(0.35, 0.8625),
), c)
# vl
fill_coords(img, point_in_triangle(
(0.25, 0.2375),
(0.35, 0.2625),
(0.3, 0.2),
), c)
# vr
fill_coords(img, point_in_quadrangle(
(0.65, 0.3375),
(0.65, 0.9375),
(0.75, 0.3625),
(0.75, 0.9625),
), c)
fill_coords(img, point_in_triangle(
(0.65, 0.3375),
(0.75, 0.3625),
(0.7, 0.3),
), c)
class Wall(WorldObj):
def __init__(self, color='grey'):
super().__init__('wall', color)
def see_behind(self):
return False
def render(self, img):
fill_coords(img, point_in_rect(0, 1, 0, 1), COLORS[self.color])
class Lever(BlockableWorldObj):
def __init__(self, color, object=None, is_on=False, block_set=None, active_steps=None):
super().__init__('lever', color, block_set)
self.is_on = is_on
self.object = object
self.active_steps = active_steps
self.countdown = None # countdown timer
self.was_activated = False
if self.block_set is not None:
if self.is_on:
raise ValueError("If using a block set, a Switch must be initialized as OFF")
def can_overlap(self):
"""The agent can only walk over this cell when the door is open"""
return False
def see_behind(self):
return True
def step(self):
if self.countdown is not None:
self.countdown = self.countdown - 1
if self.countdown <= 0:
# if nothing is on the door, close the door and deactivate timer
self.toggle()
self.countdown = None
def toggle(self, env=None, pos=None):
if self.blocked:
return False
if self.was_activated and not self.is_on:
# cannot be activated twice
return False
self.is_on = not self.is_on
if self.is_on:
if self.active_steps is not None:
# activate countdown to shutdown
self.countdown = self.active_steps
self.was_activated = True
if self.object is not None:
# open object
self.object.open_close()
if self.is_on:
self.block_block_set()
return True
def block(self):
self.blocked = True
def encode(self, nb_dims=3, absolute_coordinates=False):
"""Encode the a description of this object as a 3-tuple of integers"""
# State, 0: off, 1: on
state = 1 if self.is_on else 0
count = self.countdown if self.countdown is not None else 255
if absolute_coordinates:
v = (OBJECT_TO_IDX[self.type], *self.cur_pos, COLOR_TO_IDX[self.color], state, count)
else:
v = (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color], state, count)
v += (0,) * (nb_dims-len(v))
return v
def render(self, img):
c = COLORS[self.color]
black = (0, 0, 0)
# off_angle = -math.pi/3
off_angle = -math.pi/2
on_angle = -math.pi/8
rotating_lever_shapes = []
rotating_lever_shapes.append((point_in_rect(0.5, 0.9, 0.77, 0.83), c))
rotating_lever_shapes.append((point_in_circle(0.9, 0.8, 0.1), c))
rotating_lever_shapes.append((point_in_circle(0.5, 0.8, 0.08), c))
if self.is_on:
if self.countdown is None:
angle = on_angle
else:
angle = (self.countdown/self.active_steps) * (on_angle-off_angle) + off_angle
else:
angle = off_angle
fill_coords(img, point_in_circle_clip(0.5, 0.8, 0.12, theta_end=-math.pi), c)
# fill_coords(img, point_in_circle_clip(0.5, 0.8, 0.08, theta_end=-math.pi), black)
rotating_lever_shapes = [(rotate_fn(v, cx=0.5, cy=0.8, theta=angle), col) for v, col in rotating_lever_shapes]
for v, col in rotating_lever_shapes:
fill_coords(img, v, col)
fill_coords(img, point_in_rect(0.2, 0.8, 0.78, 0.82), c)
fill_coords(img, point_in_circle(0.5, 0.8, 0.03), (0, 0, 0))
class RemoteDoor(BlockableWorldObj):
"""Door that are unlocked by a lever"""
def __init__(self, color, is_open=False, block_set=None):
super().__init__('remotedoor', color, block_set)
self.is_open = is_open
def can_overlap(self):
"""The agent can only walk over this cell when the door is open"""
return self.is_open
def see_behind(self):
return self.is_open
# def toggle(self, env, pos=None):
# return False
def open_close(self):
# If the player has the right key to open the door
self.is_open = not self.is_open
return True
def encode(self, nb_dims=3, absolute_coordinates=False):
"""Encode the a description of this object as a 3-tuple of integers"""
# State, 0: open, 1: closed
state = 0 if self.is_open else 1
if absolute_coordinates:
v = (OBJECT_TO_IDX[self.type], *self.cur_pos, COLOR_TO_IDX[self.color], state)
else:
v = (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color], state)
v += (0,) * (nb_dims-len(v))
return v
def block(self):
self.blocked = True
def render(self, img):
c = COLORS[self.color]
if self.is_open:
fill_coords(img, point_in_rect(0.88, 1.00, 0.00, 1.00), c)
fill_coords(img, point_in_rect(0.92, 0.96, 0.04, 0.96), (0,0,0))
else:
fill_coords(img, point_in_rect(0.00, 1.00, 0.00, 1.00), c)
fill_coords(img, point_in_rect(0.04, 0.96, 0.04, 0.96), (0,0,0))
fill_coords(img, point_in_rect(0.08, 0.92, 0.08, 0.92), c)
fill_coords(img, point_in_rect(0.12, 0.88, 0.12, 0.88), (0,0,0))
# wifi symbol
fill_coords(img, point_in_circle_clip(cx=0.5, cy=0.8, r=0.5, theta_start=-np.pi/3, theta_end=-2*np.pi/3), c)
fill_coords(img, point_in_circle_clip(cx=0.5, cy=0.8, r=0.45, theta_start=-np.pi/3, theta_end=-2*np.pi/3), (0,0,0))
fill_coords(img, point_in_circle_clip(cx=0.5, cy=0.8, r=0.4, theta_start=-np.pi/3, theta_end=-2*np.pi/3), c)
fill_coords(img, point_in_circle_clip(cx=0.5, cy=0.8, r=0.35, theta_start=-np.pi/3, theta_end=-2*np.pi/3), (0,0,0))
fill_coords(img, point_in_circle_clip(cx=0.5, cy=0.8, r=0.3, theta_start=-np.pi/3, theta_end=-2*np.pi/3), c)
fill_coords(img, point_in_circle_clip(cx=0.5, cy=0.8, r=0.25, theta_start=-np.pi/3, theta_end=-2*np.pi/3), (0,0,0))
fill_coords(img, point_in_circle_clip(cx=0.5, cy=0.8, r=0.2, theta_start=-np.pi/3, theta_end=-2*np.pi/3), c)
fill_coords(img, point_in_circle_clip(cx=0.5, cy=0.8, r=0.15, theta_start=-np.pi/3, theta_end=-2*np.pi/3), (0,0,0))
fill_coords(img, point_in_circle_clip(cx=0.5, cy=0.8, r=0.1, theta_start=-np.pi/3, theta_end=-2*np.pi/3), c)
return
class Door(BlockableWorldObj):
def __init__(self, color, is_open=False, is_locked=False, block_set=None):
super().__init__('door', color, block_set)
self.is_open = is_open
self.is_locked = is_locked
def can_overlap(self):
"""The agent can only walk over this cell when the door is open"""
return self.is_open
def see_behind(self):
return self.is_open
def toggle(self, env, pos=None):
if self.blocked:
return False
# If the player has the right key to open the door
if self.is_locked:
if isinstance(env.carrying, Key) and env.carrying.color == self.color:
self.is_locked = False
self.is_open = True
ret = True
ret = False
else:
self.is_open = not self.is_open
ret = True
self.block_block_set()
return ret
def encode(self, nb_dims=3, absolute_coordinates=False):
"""Encode the a description of this object as a 3-tuple of integers"""
# State, 0: open, 1: closed, 2: locked
if self.is_open:
state = 0
elif self.is_locked:
state = 2
elif not self.is_open:
state = 1
if absolute_coordinates:
v = (OBJECT_TO_IDX[self.type], *self.cur_pos, COLOR_TO_IDX[self.color], state)
else:
v = (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color], state)
v += (0,) * (nb_dims-len(v))
return v
def render(self, img):
c = COLORS[self.color]
if self.is_open:
fill_coords(img, point_in_rect(0.88, 1.00, 0.00, 1.00), c)
fill_coords(img, point_in_rect(0.92, 0.96, 0.04, 0.96), (0,0,0))
return
# Door frame and door
if self.is_locked:
fill_coords(img, point_in_rect(0.00, 1.00, 0.00, 1.00), c)
fill_coords(img, point_in_rect(0.06, 0.94, 0.06, 0.94), 0.45 * np.array(c))
# Draw key slot
fill_coords(img, point_in_rect(0.52, 0.75, 0.50, 0.56), c)
else:
fill_coords(img, point_in_rect(0.00, 1.00, 0.00, 1.00), c)
fill_coords(img, point_in_rect(0.04, 0.96, 0.04, 0.96), (0,0,0))
fill_coords(img, point_in_rect(0.08, 0.92, 0.08, 0.92), c)
fill_coords(img, point_in_rect(0.12, 0.88, 0.12, 0.88), (0,0,0))
# Draw door handle
fill_coords(img, point_in_circle(cx=0.75, cy=0.50, r=0.08), c)
class Switch(BlockableWorldObj):
def __init__(self, color, lockable_object=None, is_on=False, no_turn_off=True, no_light=True, locker_switch=False, block_set=None):
super().__init__('switch', color, block_set)
self.is_on = is_on
self.lockable_object = lockable_object
self.no_turn_off = no_turn_off
self.no_light = no_light
self.locker_switch = locker_switch
if self.block_set is not None:
if self.is_on:
raise ValueError("If using a block set, a Switch must be initialized as OFF")
if not self.no_turn_off:
raise ValueError("If using a block set, a Switch must be initialized can't be turned off")
def can_overlap(self):
"""The agent can only walk over this cell when the door is open"""
return False
def see_behind(self):
return True
def toggle(self, env, pos=None):
if self.blocked:
return False
if self.is_on:
if self.no_turn_off:
return False
self.is_on = not self.is_on
if self.lockable_object is not None:
if self.locker_switch:
# locker/unlocker switch
self.lockable_object.is_locked = not self.lockable_object.is_locked
else:
# opener switch
self.lockable_object.toggle(env, pos)
if self.is_on:
self.block_block_set()
if self.no_turn_off:
# assert that obj is toggled only once
assert not hasattr(self, "was_toggled")
self.was_toggled = True
return True
def block(self):
self.blocked = True
def encode(self, nb_dims=3, absolute_coordinates=False):
"""Encode the a description of this object as a 3-tuple of integers"""
# State, 0: off, 1: on
state = 1 if self.is_on else 0
if self.no_light:
state = 0
if absolute_coordinates:
v = (OBJECT_TO_IDX[self.type], *self.cur_pos, COLOR_TO_IDX[self.color], state)
else:
v = (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color], state)
v += (0,) * (nb_dims-len(v))
return v
def render(self, img):
c = COLORS[self.color]
# Door frame and door
if self.is_on and not self.no_light:
fill_coords(img, point_in_rect(0.00, 1.00, 0.00, 1.00), c)
fill_coords(img, point_in_rect(0.04, 0.96, 0.04, 0.96), (0,0,0))
fill_coords(img, point_in_rect(0.08, 0.92, 0.08, 0.92), c)
fill_coords(img, point_in_rect(0.12, 0.88, 0.12, 0.88), 0.45 * np.array(c))
else:
fill_coords(img, point_in_rect(0.00, 1.00, 0.00, 1.00), c)
fill_coords(img, point_in_rect(0.04, 0.96, 0.04, 0.96), (0,0,0))
fill_coords(img, point_in_rect(0.08, 0.92, 0.08, 0.92), c)
fill_coords(img, point_in_rect(0.12, 0.88, 0.12, 0.88), (0,0,0))
class Key(WorldObj):
def __init__(self, color='blue'):
super(Key, self).__init__('key', color)
def can_pickup(self):
return True
def render(self, img):
c = COLORS[self.color]
# Vertical quad
fill_coords(img, point_in_rect(0.50, 0.63, 0.31, 0.88), c)
# Teeth
fill_coords(img, point_in_rect(0.38, 0.50, 0.59, 0.66), c)
fill_coords(img, point_in_rect(0.38, 0.50, 0.81, 0.88), c)
# Ring
fill_coords(img, point_in_circle(cx=0.56, cy=0.28, r=0.190), c)
fill_coords(img, point_in_circle(cx=0.56, cy=0.28, r=0.064), (0,0,0))
class MarbleTee(WorldObj):
def __init__(self, color="red"):
super(MarbleTee, self).__init__('marbletee', color)
def can_pickup(self):
return False
def can_push(self):
return False
def render(self, img):
c = COLORS[self.color]
fill_coords(img, point_in_quadrangle(
(0.2, 0.5),
(0.8, 0.5),
(0.4, 0.6),
(0.6, 0.6),
), c)
fill_coords(img, point_in_triangle(
(0.4, 0.6),
(0.6, 0.6),
(0.5, 0.9),
), c)
class Marble(WorldObj):
def __init__(self, color='blue', env=None):
super(Marble, self).__init__('marble', color)
self.is_tagged = False
self.moving_dir = None
self.env = env
self.was_pushed = False
self.tee = MarbleTee(color)
self.tee_uncovered = False
def can_pickup(self):
return True
def step(self):
if self.moving_dir is not None:
prev_pos = self.cur_pos
self.go_forward()
if any(prev_pos != self.cur_pos) and not self.tee_uncovered:
assert self.was_pushed
# if Marble was moved for the first time, uncover the Tee
# self.env.grid.set(*prev_pos, self.tee)
self.env.put_obj_np(self.tee, prev_pos)
self.tee_uncovered = True
@property
def is_moving(self):
return self.moving_dir is not None
@property
def dir_vec(self):
"""
Get the direction vector for the agent, pointing in the direction
of forward movement.
"""
if self.moving_dir is not None:
return DIR_TO_VEC[self.moving_dir]
else:
return np.array((0, 0))
@property
def front_pos(self):
"""
Get the position of the cell that is right in front of the agent
"""
return self.cur_pos + self.dir_vec
def go_forward(self):
# Get the position in front of the agent
fwd_pos = self.front_pos
# Get the contents of the cell in front of the agent
fwd_cell = self.env.grid.get(*fwd_pos)
# Don't move if you are going to collide
if fwd_pos.tolist() != self.env.agent_pos.tolist() and (fwd_cell is None or fwd_cell.can_overlap()):
self.env.grid.set(*self.cur_pos, None)
self.env.grid.set(*fwd_pos, self)
self.cur_pos = fwd_pos
return True
# push object if pushable
if fwd_pos.tolist() != self.env.agent_pos.tolist() and (fwd_cell is not None and fwd_cell.can_push()):
fwd_cell.push(push_dir=self.moving_dir, pusher=self)
self.moving_dir = None
return True
else:
self.moving_dir = None
return False
def can_push(self):
return True
def push(self, push_dir, pusher=None):
if type(push_dir) is not int:
raise ValueError("Direction must be of type int and is of type {}".format(type(push_dir)))
self.moving_dir = push_dir
if self.moving_dir is not None:
self.was_pushed = True
def render(self, img):
color = COLORS[self.color]
if self.is_tagged:
color = color / 2
fill_coords(img, point_in_circle(0.5, 0.5, 0.20), color)
fill_coords(img, point_in_circle(0.55, 0.45, 0.07), (0, 0, 0))
def tag(self,):
self.is_tagged = True
def encode(self, nb_dims=3, absolute_coordinates=False):
"""Encode the a description of this object as a nb_dims-tuple of integers"""
if absolute_coordinates:
core = (OBJECT_TO_IDX[self.type], *self.cur_pos, COLOR_TO_IDX[self.color])
else:
core = (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color])
return core + (1 if self.is_tagged else 0,) * (nb_dims - len(core))
class Ball(WorldObj):
def __init__(self, color='blue'):
super(Ball, self).__init__('ball', color)
self.is_tagged = False
def can_pickup(self):
return True
def render(self, img):
color = COLORS[self.color]
if self.is_tagged:
color = color / 2
fill_coords(img, point_in_circle(0.5, 0.5, 0.31), color)
def tag(self,):
self.is_tagged = True
def encode(self, nb_dims=3, absolute_coordinates=False):
"""Encode the a description of this object as a nb_dims-tuple of integers"""
if absolute_coordinates:
core = (OBJECT_TO_IDX[self.type], *self.cur_pos, COLOR_TO_IDX[self.color])
else:
core = (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color])
return core + (1 if self.is_tagged else 0,) * (nb_dims - len(core))
class Apple(WorldObj):
def __init__(self, color='red', eaten=False):
super(Apple, self).__init__('apple', color)
self.is_tagged = False
self.eaten = eaten
assert self.color != "yellow"
def revert(self, color='red', eaten=False):
self.color = color
self.is_tagged = False
self.eaten = eaten
assert self.color != "yellow"
def can_pickup(self):
return False
def render(self, img):
color = COLORS[self.color]
if self.is_tagged:
color = color / 2
fill_coords(img, point_in_circle(0.5, 0.5, 0.31), color)
fill_coords(img, point_in_rect(0.1, 0.9, 0.1, 0.55), (0, 0, 0))
fill_coords(img, point_in_circle(0.35, 0.5, 0.15), color)
fill_coords(img, point_in_circle(0.65, 0.5, 0.15), color)
fill_coords(img, point_in_rect(0.48, 0.52, 0.2, 0.45), COLORS["brown"])
# quadrangle
fill_coords(img, point_in_quadrangle(
(0.52, 0.25),
(0.65, 0.1),
(0.75, 0.3),
(0.90, 0.15),
), COLORS["green"])
if self.eaten:
assert self.color == "yellow"
fill_coords(img, point_in_circle(0.74, 0.6, 0.23), (0,0,0))
fill_coords(img, point_in_circle(0.26, 0.6, 0.23), (0,0,0))
def toggle(self, env, pos):
if not self.eaten:
self.eaten = True
assert self.color != "yellow"
self.color = "yellow"
return True
else:
assert self.color == "yellow"
return False
def tag(self,):
self.is_tagged = True
def encode(self, nb_dims=3, absolute_coordinates=False):
"""Encode the a description of this object as a nb_dims-tuple of integers"""
# eaten <=> yellow
assert self.eaten == (self.color == "yellow")
if absolute_coordinates:
core = (OBJECT_TO_IDX[self.type], *self.cur_pos, COLOR_TO_IDX[self.color])
else:
core = (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color])
return core + (1 if self.is_tagged else 0,) * (nb_dims - len(core))
class GeneratorPlatform(WorldObj):
def __init__(self, color="red"):
super(GeneratorPlatform, self).__init__('generatorplatform', color)
def can_pickup(self):
return False
def can_push(self):
return False
def render(self, img):
c = COLORS[self.color]
fill_coords(img, point_in_circle(0.5, 0.5, 0.2), c)
fill_coords(img, point_in_circle(0.5, 0.5, 0.18), (0,0,0))
fill_coords(img, point_in_circle(0.5, 0.5, 0.16), c)
fill_coords(img, point_in_circle(0.5, 0.5, 0.14), (0,0,0))
class AppleGenerator(BlockableWorldObj):
def __init__(self, color="red", is_pressed=False, block_set=None, on_push=None, marble_activation=False):
super(AppleGenerator, self).__init__('applegenerator', color, block_set)
self.is_pressed = is_pressed
self.on_push = on_push
self.marble_activation = marble_activation
def can_pickup(self):
return False
def block(self):
self.blocked = True
def can_push(self):
return True
def push(self, push_dir=None, pusher=None):
if self.marble_activation:
# check that it is marble that pushed the generator
if type(pusher) != Marble:
return self.block_block_set()
if not self.blocked:
self.is_pressed = True
if self.on_push:
self.on_push()
return self.block_block_set()
else:
return False
def render(self, img):
c = COLORS[self.color]
if not self.marble_activation:
# Outline
fill_coords(img, point_in_rect(0.15, 0.85, 0.15, 0.85), c)
# fill_coords(img, point_in_rect(0.17, 0.83, 0.17, 0.83), (0, 0, 0))
fill_coords(img, point_in_rect(0.16, 0.84, 0.16, 0.84), (0, 0, 0))
# Outline
fill_coords(img, point_in_rect(0.22, 0.78, 0.22, 0.78), c)
fill_coords(img, point_in_rect(0.24, 0.76, 0.24, 0.76), (0, 0, 0))
else:
# Outline
fill_coords(img, point_in_circle(0.5, 0.5, 0.37), c)
fill_coords(img, point_in_circle(0.5, 0.5, 0.35), (0, 0, 0))
# Outline
fill_coords(img, point_in_circle(0.5, 0.5, 0.32), c)
fill_coords(img, point_in_circle(0.5, 0.5, 0.30), (0, 0, 0))
# Apple inside
fill_coords(img, point_in_circle(0.5, 0.5, 0.2), COLORS["red"])
# fill_coords(img, point_in_rect(0.18, 0.82, 0.18, 0.55), (0, 0, 0))
fill_coords(img, point_in_rect(0.30, 0.65, 0.30, 0.55), (0, 0, 0))
fill_coords(img, point_in_circle(0.42, 0.5, 0.12), COLORS["red"])
fill_coords(img, point_in_circle(0.58, 0.5, 0.12), COLORS["red"])
# peteljka
fill_coords(img, point_in_rect(0.49, 0.50, 0.25, 0.45), COLORS["brown"])
# leaf
fill_coords(img, point_in_quadrangle(
(0.52, 0.32),
(0.60, 0.21),
(0.70, 0.34),
(0.80, 0.23),
), COLORS["green"])
def encode(self, nb_dims=3, absolute_coordinates=False):
"""Encode the a description of this object as a 3-tuple of integers"""
type = 2 if self.marble_activation else 1
if absolute_coordinates:
v = (OBJECT_TO_IDX[self.type], *self.cur_pos, COLOR_TO_IDX[self.color], type)
else:
v = (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color], type)
v += (0,) * (nb_dims - len(v))
return v
class Box(WorldObj):
def __init__(self, color="red", contains=None):
super(Box, self).__init__('box', color)
self.contains = contains
def can_pickup(self):
return True
def render(self, img):
c = COLORS[self.color]
# Outline
fill_coords(img, point_in_rect(0.12, 0.88, 0.12, 0.88), c)
fill_coords(img, point_in_rect(0.18, 0.82, 0.18, 0.82), (0,0,0))
# Horizontal slit
fill_coords(img, point_in_rect(0.16, 0.84, 0.47, 0.53), c)
def toggle(self, env, pos):
# Replace the box by its contents
env.grid.set(*pos, self.contains)
return True
class LockableBox(BlockableWorldObj):
def __init__(self, color="red", is_locked=False, contains=None, block_set=None):
super(LockableBox, self).__init__('lockablebox', color, block_set)
self.contains = contains
self.is_locked = is_locked
self.is_open = False
def can_pickup(self):
return True
def encode(self, nb_dims=3, absolute_coordinates=False):
"""Encode the a description of this object as a 3-tuple of integers"""
# State, 0: open, 1: closed, 2: locked
# 2 and 1 to be consistent with doors
if self.is_locked:
state = 2
else:
state = 1
if absolute_coordinates:
v = (OBJECT_TO_IDX[self.type], *self.cur_pos, COLOR_TO_IDX[self.color], state)
else:
v = (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color], state)
v += (0,) * (nb_dims - len(v))
return v
def render(self, img):
c = COLORS[self.color]
# Outline
fill_coords(img, point_in_rect(0.12, 0.88, 0.12, 0.88), c)
if self.is_locked:
fill_coords(img, point_in_rect(0.18, 0.82, 0.18, 0.82), 0.45 * np.array(c))
else:
fill_coords(img, point_in_rect(0.18, 0.82, 0.18, 0.82), (0, 0, 0))
# Horizontal slit
fill_coords(img, point_in_rect(0.16, 0.84, 0.47, 0.53), c)
def toggle(self, env, pos):
if self.blocked:
return False
if self.is_locked:
if isinstance(env.carrying, Key) and env.carrying.color == self.color:
self.is_locked = False
self.is_open = True
return True
return False
self.is_open = True
# Replace the box by its contents
env.grid.set(*pos, self.contains)
self.block_block_set()
# assert that obj is toggled only once
assert not hasattr(self, "was_toggled")
self.was_toggled = True
return True
def block(self):
self.blocked = True
class NPC(ABC, WorldObj):
def __init__(self, color, view_size=7):
super().__init__('npc', color)
self.point_dir = 255 # initially no point
self.introduction_statement = "Help please "
self.list_of_possible_utterances = NPC.get_list_of_possible_utterances()
self.view_size = view_size
self.carrying = False
self.prim_actions_dict = SocialAINPCActionsDict
self.reset_last_action()
@staticmethod
def get_list_of_possible_utterances():
return ["no_op"]
def _npc_action(func):
"""
Decorator that logs the last action
"""
@wraps(func)
def func_wrapper(self, *args, **kwargs):
if self.env.add_npc_last_prim_action:
self.last_action = func.__name__
return func(self, *args, **kwargs)
return func_wrapper
def reset_last_action(self):
self.last_action = "no_op"
def step(self):
self.reset_last_action()
if self.env.hidden_npc:
info = {
"prim_action": "no_op",
"utterance": "no_op",
"was_introduced_to": self.was_introduced_to
}
return None, info
else:
return None, None
def handle_introduction(self, utterance):
reply, action = None, None
# introduction and language
if self.env.parameters.get("Pragmatic_frame_complexity", "No") == "No":
# only once
if not self.was_introduced_to:
self.was_introduced_to = True
elif self.env.parameters["Pragmatic_frame_complexity"] == "Eye_contact":
# only first time at eye contact
if self.is_eye_contact() and not self.was_introduced_to:
self.was_introduced_to = True
# if not self.was_introduced_to:
# rotate to see the agent
# action = self.look_at_action(self.env.agent_pos)
elif self.env.parameters["Pragmatic_frame_complexity"] == "Ask":
# every time asked
if utterance == self.introduction_statement:
self.was_introduced_to = True
elif self.env.parameters["Pragmatic_frame_complexity"] == "Ask_Eye_contact":
# only first time at eye contact with the introduction statement
if (self.is_eye_contact() and utterance == self.introduction_statement) and not self.was_introduced_to:
self.was_introduced_to = True
# if not self.was_introduced_to:
# # rotate to see the agent
# action = self.look_at_action(self.env.agent_pos)
else:
raise NotImplementedError()
return reply, action
def look_at_action(self, target_pos):
# rotate to see the target_pos
wanted_dir = self.compute_wanted_dir(target_pos)
action = self.compute_turn_action(wanted_dir)
return action
@_npc_action
def rotate_left(self):
self.npc_dir -= 1
if self.npc_dir < 0:
self.npc_dir += 4
return True
@_npc_action
def rotate_right(self):
self.npc_dir = (self.npc_dir + 1) % 4
return True
def path_to_toggle_pos(self, goal_pos):
"""
Return the next action from the path to toggling an object at goal_pos
"""
if type(goal_pos) != np.ndarray or goal_pos.shape != (2,):
raise ValueError(f"goal_pos must be a np.ndarray of shape (2,) and is {goal_pos}")
assert type(self.front_pos) == np.ndarray and self.front_pos.shape == (2,)
if all(self.front_pos == goal_pos):
# in front of door
return self.toggle_action
else:
return self.path_to_pos(goal_pos)
def turn_to_see_agent(self):
wanted_dir = self.compute_wanted_dir(self.env.agent_pos)
action = self.compute_turn_action(wanted_dir)
return action
def relative_coords(self, x, y):
"""
Check if a grid position belongs to the npc's field of view, and returns the corresponding coordinates
"""
vx, vy = self.get_view_coords(x, y)
if vx < 0 or vy < 0 or vx >= self.view_size or vy >= self.view_size:
return None
return vx, vy
def get_view_coords(self, i, j):
"""
Translate and rotate absolute grid coordinates (i, j) into the
npc's partially observable view (sub-grid). Note that the resulting
coordinates may be negative or outside of the npc's view size.
"""
ax, ay = self.cur_pos
dx, dy = self.dir_vec
rx, ry = self.right_vec
# Compute the absolute coordinates of the top-left view corner
sz = self.view_size
hs = self.view_size // 2
tx = ax + (dx * (sz-1)) - (rx * hs)
ty = ay + (dy * (sz-1)) - (ry * hs)
lx = i - tx
ly = j - ty
# Project the coordinates of the object relative to the top-left
# corner onto the agent's own coordinate system
vx = (rx*lx + ry*ly)
vy = -(dx*lx + dy*ly)
return vx, vy
def is_pointing(self):
return self.point_dir != 255
def path_to_pos(self, goal_pos):
"""
Return the next action from the path to goal_pos
"""
if type(goal_pos) != np.ndarray or goal_pos.shape != (2,):
raise ValueError(f"goal_pos must be a np.ndarray of shape (2,) and is {goal_pos}")
def neighbors(n):
n_nd = np.array(n)
adjacent_positions = [
n_nd + np.array([ 0, 1]),
n_nd + np.array([ 0,-1]),
n_nd + np.array([ 1, 0]),
n_nd + np.array([-1, 0]),
]
adjacent_cells = map(lambda pos: self.env.grid.get(*pos), adjacent_positions)
# keep the positions that don't have anything on or can_overlap
neighbors = [
tuple(pos) for pos, cell in
zip(adjacent_positions, adjacent_cells) if (
all(pos == goal_pos)
or cell is None
or cell.can_overlap()
) and not all(pos == self.env.agent_pos)
]
for n1 in neighbors:
yield n1
def distance(n1, n2):
return 1
def cost(n, goal):
# manhattan
return int(np.abs(np.array(n) - np.array(goal)).sum())
# def is_goal_reached(n, goal):
# return all(n == goal)
path = astar.find_path(
# tuples because np.ndarray is not hashable
tuple(self.cur_pos),
tuple(goal_pos),
neighbors_fnct=neighbors,
heuristic_cost_estimate_fnct=cost,
distance_between_fnct=distance,
# is_goal_reached_fnct=is_goal_reached
)
if path is None:
# no possible path
return None
path = list(path)
assert all(path[0] == self.cur_pos)
next_step = path[1]
wanted_dir = self.compute_wanted_dir(next_step)
if self.npc_dir == wanted_dir:
return self.go_forward
else:
return self.compute_turn_action(wanted_dir)
def gen_obs_grid(self):
"""
Generate the sub-grid observed by the npc.
This method also outputs a visibility mask telling us which grid
cells the npc can actually see.
"""
view_size = self.view_size
topX, topY, botX, botY = self.env.get_view_exts(dir=self.npc_dir, view_size=view_size, pos=self.cur_pos)
grid = self.env.grid.slice(topX, topY, view_size, view_size)
for i in range(self.npc_dir + 1):
grid = grid.rotate_left()
# Process ocluders and visibility
# Note that this incurs some performance cost
if not self.env.see_through_walls:
vis_mask = grid.process_vis(agent_pos=(view_size // 2, view_size - 1))
else:
vis_mask = np.ones(shape=(grid.width, grid.height), dtype=np.bool)
# Make it so the npc sees what it's carrying
# We do this by placing the carried object at the agent's position
# in the agent's partially observable view
npc_pos = grid.width // 2, grid.height - 1
if self.carrying:
grid.set(*npc_pos, self.carrying)
else:
grid.set(*npc_pos, None)
return grid, vis_mask
def is_near_agent(self):
ax, ay = self.env.agent_pos
wx, wy = self.cur_pos
if (ax == wx and abs(ay - wy) == 1) or (ay == wy and abs(ax - wx) == 1):
return True
return False
def is_eye_contact(self):
"""
Returns true if the agent and the NPC are looking at each other
"""
if self.cur_pos[1] == self.env.agent_pos[1]:
# same y
if self.cur_pos[0] > self.env.agent_pos[0]:
return self.npc_dir == 2 and self.env.agent_dir == 0
else:
return self.npc_dir == 0 and self.env.agent_dir == 2
if self.cur_pos[0] == self.env.agent_pos[0]:
# same x
if self.cur_pos[1] > self.env.agent_pos[1]:
return self.npc_dir == 3 and self.env.agent_dir == 1
else:
return self.npc_dir == 1 and self.env.agent_dir == 3
return False
def compute_wanted_dir(self, target_pos):
"""
Computes the direction in which the NPC should look to see target pos
"""
distance_vec = target_pos - self.cur_pos
angle = np.degrees(np.arctan2(*distance_vec))
if angle < 0:
angle += 360
if angle < 45:
wanted_dir = 1 # S
elif angle < 135:
wanted_dir = 0 # E
elif angle < 225:
wanted_dir = 3 # N
elif angle < 315:
wanted_dir = 2 # W
elif angle < 360:
wanted_dir = 1 # S
return wanted_dir
def compute_wanted_point_dir(self, target_pos):
point_dir = self.compute_wanted_dir(target_pos)
return point_dir
# dir = 0 # E
# dir = 1 # S
# dir = 2 # W
# dir = 3 # N
# dir = 255 # no point
@_npc_action
def stop_point(self):
self.point_dir = 255
return True
@_npc_action
def point_E(self):
self.point_dir = point_dir_encoding["point_E"]
return True
@_npc_action
def point_S(self):
self.point_dir = point_dir_encoding["point_S"]
return True
@_npc_action
def point_W(self):
self.point_dir = point_dir_encoding["point_W"]
return True
@_npc_action
def point_N(self):
self.point_dir = point_dir_encoding["point_N"]
return True
def compute_wanted_point_action(self, target_pos):
point_dir = self.compute_wanted_dir(target_pos)
if point_dir == point_dir_encoding["point_E"]:
return self.point_E
elif point_dir == point_dir_encoding["point_S"]:
return self.point_S
elif point_dir == point_dir_encoding["point_W"]:
return self.point_W
elif point_dir == point_dir_encoding["point_N"]:
return self.point_N
else:
raise ValueError("Unknown direction {}".format(point_dir))
def compute_turn_action(self, wanted_dir):
"""
Return the action turning for in the direction of wanted_dir
"""
if self.npc_dir == wanted_dir:
# return lambda *args: None
return None
if (wanted_dir - self.npc_dir) == 1 or (wanted_dir == 0 and self.npc_dir == 3):
return self.rotate_right
if (wanted_dir - self.npc_dir) == - 1 or (wanted_dir == 3 and self.npc_dir == 0):
return self.rotate_left
else:
return self.env._rand_elem([self.rotate_left, self.rotate_right])
@_npc_action
def go_forward(self):
# Get the position in front of the agent
fwd_pos = self.front_pos
# Get the contents of the cell in front of the agent
fwd_cell = self.env.grid.get(*fwd_pos)
# Don't move if you are going to collide
if fwd_pos.tolist() != self.env.agent_pos.tolist() and (fwd_cell is None or fwd_cell.can_overlap()):
self.env.grid.set(*self.cur_pos, None)
self.env.grid.set(*fwd_pos, self)
self.cur_pos = fwd_pos
return True
# push object if pushable
if fwd_pos.tolist() != self.env.agent_pos.tolist() and (fwd_cell is not None and fwd_cell.can_push()):
fwd_cell.push(push_dir=self.npc_dir, pusher=self)
else:
return False
@_npc_action
def toggle_action(self):
fwd_pos = self.front_pos
fwd_cell = self.env.grid.get(*fwd_pos)
if fwd_cell:
return fwd_cell.toggle(self.env, fwd_pos)
return False
@property
def dir_vec(self):
"""
Get the direction vector for the agent, pointing in the direction
of forward movement.
"""
assert self.npc_dir >= 0 and self.npc_dir < 4
return DIR_TO_VEC[self.npc_dir]
@property
def right_vec(self):
"""
Get the vector pointing to the right of the agent.
"""
dx, dy = self.dir_vec
return np.array((-dy, dx))
@property
def front_pos(self):
"""
Get the position of the cell that is right in front of the agent
"""
return self.cur_pos + self.dir_vec
@property
def back_pos(self):
"""
Get the position of the cell that is right in front of the agent
"""
return self.cur_pos - self.dir_vec
@property
def right_pos(self):
"""
Get the position of the cell that is right in front of the agent
"""
return self.cur_pos + self.right_vec
@property
def left_pos(self):
"""
Get the position of the cell that is right in front of the agent
"""
return self.cur_pos - self.right_vec
def draw_npc_face(self, c):
assert self.npc_type == 0
assert all(COLORS[self.color] == c)
shapes = []
shapes_colors = []
# Draw eyes
shapes.append(point_in_circle(cx=0.70, cy=0.50, r=0.10))
shapes_colors.append(c)
shapes.append(point_in_circle(cx=0.30, cy=0.50, r=0.10))
shapes_colors.append(c)
# Draw mouth
shapes.append(point_in_rect(0.20, 0.80, 0.72, 0.81))
shapes_colors.append(c)
# Draw bottom hat
shapes.append(point_in_triangle((0.15, 0.28),
(0.85, 0.28),
(0.50, 0.05)))
shapes_colors.append(c)
# Draw top hat
shapes.append(point_in_rect(0.30, 0.70, 0.05, 0.28))
shapes_colors.append(c)
return shapes, shapes_colors
def render(self, img):
c = COLORS[self.color]
npc_shapes = []
npc_shapes_colors = []
npc_face_shapes, npc_face_shapes_colors = self.draw_npc_face(c=c)
npc_shapes.extend(npc_face_shapes)
npc_shapes_colors.extend(npc_face_shapes_colors)
if hasattr(self, "npc_dir"):
# Pre-rotation to ensure npc_dir = 1 means NPC looks downwards
npc_shapes = [rotate_fn(v, cx=0.5, cy=0.5, theta=-1*(math.pi / 2)) for v in npc_shapes]
# Rotate npc based on its direction
npc_shapes = [rotate_fn(v, cx=0.5, cy=0.5, theta=(math.pi/2) * self.npc_dir) for v in npc_shapes]
if hasattr(self, "point_dir"):
if self.is_pointing():
# default points east
finger = point_in_triangle((0.85, 0.1),
(0.85, 0.3),
(0.99, 0.2))
finger = rotate_fn(finger, cx=0.5, cy=0.5, theta=(math.pi/2) * self.point_dir)
npc_shapes.append(finger)
npc_shapes_colors.append(c)
if self.last_action == self.toggle_action.__name__:
# T symbol
t_symbol = [point_in_rect(0.8, 0.84, 0.02, 0.18), point_in_rect(0.8, 0.95, 0.08, 0.12)]
t_symbol = [rotate_fn(v, cx=0.5, cy=0.5, theta=(math.pi/2) * self.npc_dir) for v in t_symbol]
npc_shapes.extend(t_symbol)
npc_shapes_colors.extend([c, c])
elif self.last_action == self.go_forward.__name__:
# symbol for Forward (ommited for speed)
pass
if self.env.hidden_npc:
# crossed eye symbol
dx, dy = 0.15, -0.2
# draw eye
npc_shapes.append(point_in_circle(cx=0.70+dx, cy=0.48+dy, r=0.11))
npc_shapes_colors.append((128,128,128))
npc_shapes.append(point_in_circle(cx=0.30+dx, cy=0.52+dy, r=0.11))
npc_shapes_colors.append((128,128,128))
npc_shapes.append(point_in_circle(0.5+dx, 0.5+dy, 0.25))
npc_shapes_colors.append((128, 128, 128))
npc_shapes.append(point_in_circle(0.5+dx, 0.5+dy, 0.20))
npc_shapes_colors.append((0, 0, 0))
npc_shapes.append(point_in_circle(0.5+dx, 0.5+dy, 0.1))
npc_shapes_colors.append((128, 128, 128))
# cross it
npc_shapes.append(point_in_line(0.2+dx, 0.7+dy, 0.8+dx, 0.3+dy, 0.04))
npc_shapes_colors.append((128, 128, 128))
# Draw shapes
for v, c in zip(npc_shapes, npc_shapes_colors):
fill_coords(img, v, c)
def cache(self, *args, **kwargs):
"""Used for cached rendering."""
# adding npc_dir and point_dir because, when egocentric coordinates are used,
# they can result in the same encoding but require new rendering
return self.encode(*args, **kwargs) + (self.npc_dir, self.point_dir,)
def can_overlap(self):
# If the NPC is hidden, agent can overlap on it
return self.env.hidden_npc
def encode(self, nb_dims=3, absolute_coordinates=False):
if not hasattr(self, "npc_type"):
raise ValueError("An NPC class must implement the npc_type (int)")
if not hasattr(self, "env"):
raise ValueError("An NPC class must have the env")
assert nb_dims == 6+2*bool(absolute_coordinates)
if self.env.hidden_npc:
return (1,) + (0,) * (nb_dims-1)
assert self.env.egocentric_observation == (not absolute_coordinates)
if absolute_coordinates:
v = (OBJECT_TO_IDX[self.type], *self.cur_pos, COLOR_TO_IDX[self.color], self.npc_type)
else:
v = (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color], self.npc_type)
if self.env.add_npc_direction:
assert hasattr(self, "npc_dir"), "4D but there is no npc dir in NPC state"
assert self.npc_dir >= 0
if self.env.egocentric_observation:
assert self.env.agent_dir >= 0
# 0 - eye contact; 2 - gaze in same direction; 1 - to left; 3 - to right
npc_dir_enc = (self.npc_dir - self.env.agent_dir + 2) % 4
v += (npc_dir_enc,)
else:
v += (self.npc_dir,)
if self.env.add_npc_point_direction:
assert hasattr(self, "point_dir"), "5D but there is no npc point dir in NPC state"
if self.point_dir == 255:
# no pointing
v += (self.point_dir,)
elif 0 <= self.point_dir <= 3:
# pointing
if self.env.egocentric_observation:
assert self.env.agent_dir >= 0
# 0 - pointing at agent; 2 - point in direction of agent gaze; 1 - to left; 3 - to right
point_enc = (self.point_dir - self.env.agent_dir + 2) % 4
v += (point_enc,)
else:
v += (self.point_dir,)
else:
raise ValueError(f"Undefined point direction {self.point_dir}")
if self.env.add_npc_last_prim_action:
assert hasattr(self, "last_action"), "6D but there is no last action in NPC state"
if self.last_action in ["point_E", "point_S", "point_W", "point_N"] and self.env.egocentric_observation:
# get the direction of the last point
last_action_point_dir = point_dir_encoding[self.last_action]
# convert to relative dir
# 0 - pointing at agent; 2 - point in direction of agent gaze; 1 - to left; 3 - to right
last_action_relative_point_dir = (last_action_point_dir - self.env.agent_dir + 2) % 4
# the point_X action ids are in range [point_E, ... , point_N]
# id of point_E is the starting one, we use the same range [E, S, W ,N ] -> [at, left, same, right]
last_action_id = self.prim_actions_dict["point_E"] + last_action_relative_point_dir
else:
last_action_id = self.prim_actions_dict[self.last_action]
v += (last_action_id,)
assert self.point_dir >= 0
assert len(v) == nb_dims
return v
class Grid:
"""
Represent a grid and operations on it
"""
# Static cache of pre-renderer tiles
tile_cache = {}
def __init__(self, width, height, nb_obj_dims):
assert width >= 3
assert height >= 3
self.width = width
self.height = height
self.nb_obj_dims = nb_obj_dims
self.grid = [None] * width * height
def __contains__(self, key):
if isinstance(key, WorldObj):
for e in self.grid:
if e is key:
return True
elif isinstance(key, tuple):
for e in self.grid:
if e is None:
continue
if (e.color, e.type) == key:
return True
if key[0] is None and key[1] == e.type:
return True
return False
def __eq__(self, other):
grid1 = self.encode()
grid2 = other.encode()
return np.array_equal(grid2, grid1)
def __ne__(self, other):
return not self == other
def copy(self):
from copy import deepcopy
return deepcopy(self)
def set(self, i, j, v):
assert i >= 0 and i < self.width
assert j >= 0 and j < self.height
self.grid[j * self.width + i] = v
def get(self, i, j):
assert i >= 0 and i < self.width
assert j >= 0 and j < self.height
return self.grid[j * self.width + i]
def horz_wall(self, x, y, length=None, obj_type=Wall):
if length is None:
length = self.width - x
for i in range(0, length):
o = obj_type()
o.cur_pos = np.array((x+i, y))
self.set(x + i, y, o)
def vert_wall(self, x, y, length=None, obj_type=Wall):
if length is None:
length = self.height - y
for j in range(0, length):
o = obj_type()
o.cur_pos = np.array((x, y+j))
self.set(x, y + j, o)
def wall_rect(self, x, y, w, h):
self.horz_wall(x, y, w)
self.horz_wall(x, y+h-1, w)
self.vert_wall(x, y, h)
self.vert_wall(x+w-1, y, h)
def rotate_left(self):
"""
Rotate the grid to the left (counter-clockwise)
"""
grid = Grid(self.height, self.width, self.nb_obj_dims)
for i in range(self.width):
for j in range(self.height):
v = self.get(i, j)
grid.set(j, grid.height - 1 - i, v)
return grid
def slice(self, topX, topY, width, height):
"""
Get a subset of the grid
"""
grid = Grid(width, height, self.nb_obj_dims)
for j in range(0, height):
for i in range(0, width):
x = topX + i
y = topY + j
if x >= 0 and x < self.width and \
y >= 0 and y < self.height:
v = self.get(x, y)
else:
v = Wall()
grid.set(i, j, v)
return grid
@classmethod
def render_tile(
cls,
obj,
agent_dir=None,
highlight=False,
tile_size=TILE_PIXELS,
subdivs=3,
nb_obj_dims=3,
mask_unobserved=False
):
"""
Render a tile and cache the result
"""
# Hash map lookup key for the cache
key = (agent_dir, highlight, tile_size, mask_unobserved)
# key = obj.encode(nb_dims=nb_obj_dims) + key if obj else key
key = obj.cache(nb_dims=nb_obj_dims) + key if obj else key
if key in cls.tile_cache:
return cls.tile_cache[key]
img = np.zeros(shape=(tile_size * subdivs, tile_size * subdivs, 3), dtype=np.uint8) # 3D for rendering
# Draw the grid lines (top and left edges)
fill_coords(img, point_in_rect(0, 0.031, 0, 1), (100, 100, 100))
fill_coords(img, point_in_rect(0, 1, 0, 0.031), (100, 100, 100))
if obj != None:
obj.render(img)
# Overlay the agent on top
if agent_dir is not None:
tri_fn = point_in_triangle(
(0.12, 0.19),
(0.87, 0.50),
(0.12, 0.81),
)
# Rotate the agent based on its direction
tri_fn = rotate_fn(tri_fn, cx=0.5, cy=0.5, theta=0.5*math.pi*agent_dir)
fill_coords(img, tri_fn, (255, 0, 0))
# Highlight the cell if needed
if highlight:
highlight_img(img)
elif mask_unobserved:
# mask unobserved and not highlighted -> unobserved by the agent
img *= 0
# Downsample the image to perform supersampling/anti-aliasing
img = downsample(img, subdivs)
# Cache the rendered tile
cls.tile_cache[key] = img
return img
def render(
self,
tile_size,
agent_pos=None,
agent_dir=None,
highlight_mask=None,
mask_unobserved=False,
):
"""
Render this grid at a given scale
:param r: target renderer object
:param tile_size: tile size in pixels
"""
if highlight_mask is None:
highlight_mask = np.zeros(shape=(self.width, self.height), dtype=np.bool)
# Compute the total grid size
width_px = self.width * tile_size
height_px = self.height * tile_size
img = np.zeros(shape=(height_px, width_px, 3), dtype=np.uint8)
# Render the grid
for j in range(0, self.height):
for i in range(0, self.width):
cell = self.get(i, j)
agent_here = np.array_equal(agent_pos, (i, j))
tile_img = Grid.render_tile(
cell,
agent_dir=agent_dir if agent_here else None,
highlight=highlight_mask[i, j],
tile_size=tile_size,
nb_obj_dims=self.nb_obj_dims,
mask_unobserved=mask_unobserved
)
ymin = j * tile_size
ymax = (j+1) * tile_size
xmin = i * tile_size
xmax = (i+1) * tile_size
img[ymin:ymax, xmin:xmax, :] = tile_img
return img
def encode(self, vis_mask=None, absolute_coordinates=False):
"""
Produce a compact numpy encoding of the grid
"""
if vis_mask is None:
vis_mask = np.ones((self.width, self.height), dtype=bool)
array = np.zeros((self.width, self.height, self.nb_obj_dims), dtype='uint8')
for i in range(self.width):
for j in range(self.height):
if vis_mask[i, j]:
v = self.get(i, j)
if v is None:
array[i, j, 0] = OBJECT_TO_IDX['empty']
array[i, j, 1:] = 0
else:
array[i, j, :] = v.encode(nb_dims=self.nb_obj_dims, absolute_coordinates=absolute_coordinates)
return array
@staticmethod
def decode(array):
"""
Decode an array grid encoding back into a grid
"""
width, height, channels = array.shape
assert channels in [5, 4, 3]
vis_mask = np.ones(shape=(width, height), dtype=np.bool)
grid = Grid(width, height, nb_obj_dims=channels)
for i in range(width):
for j in range(height):
if len(array[i, j]) == 3:
type_idx, color_idx, state = array[i, j]
else:
type_idx, color_idx, state, orient = array[i, j]
v = WorldObj.decode(type_idx, color_idx, state)
grid.set(i, j, v)
vis_mask[i, j] = (type_idx != OBJECT_TO_IDX['unseen'])
return grid, vis_mask
def process_vis(grid, agent_pos):
# mask = np.zeros(shape=(grid.width, grid.height), dtype=np.bool)
#
# mask[agent_pos[0], agent_pos[1]] = True
#
# for j in reversed(range(0, grid.height)):
# for i in range(0, grid.width-1):
# if not mask[i, j]:
# continue
#
# cell = grid.get(i, j)
# if cell and not cell.see_behind():
# continue
#
# mask[i+1, j] = True
# if j > 0:
# mask[i+1, j-1] = True
# mask[i, j-1] = True
#
# for i in reversed(range(1, grid.width)):
# if not mask[i, j]:
# continue
#
# cell = grid.get(i, j)
# if cell and not cell.see_behind():
# continue
#
# mask[i-1, j] = True
# if j > 0:
# mask[i-1, j-1] = True
# mask[i, j-1] = True
mask = np.ones(shape=(grid.width, grid.height), dtype=np.bool)
# handle frontal occlusions
# 45 deg
for j in reversed(range(0, agent_pos[1]+1)):
dy = abs(agent_pos[1] - j)
# in front of the agent
i = agent_pos[0]
cell = grid.get(i, j)
if (cell and not cell.see_behind()) or mask[i, j] == False:
if j < agent_pos[1] and j > 0:
# 45 deg
mask[i-1,j-1] = False
mask[i,j-1] = False
mask[i+1,j-1] = False
# agent -> to the left
for i in reversed(range(1, agent_pos[0])):
dx = abs(agent_pos[0] - i)
cell = grid.get(i, j)
if (cell and not cell.see_behind()) or mask[i,j] == False:
# angle
if dx >= dy:
mask[i - 1, j] = False
if j > 0:
mask[i - 1, j - 1] = False
if dy >= dx:
mask[i, j - 1] = False
# agent -> to the right
for i in range(agent_pos[0]+1, grid.width-1):
dx = abs(agent_pos[0] - i)
cell = grid.get(i, j)
if (cell and not cell.see_behind()) or mask[i,j] == False:
# angle
if dx >= dy:
mask[i + 1, j] = False
if j > 0:
mask[i + 1, j - 1] = False
if dy >= dx:
mask[i, j - 1] = False
# for i in range(0, grid.width):
# cell = grid.get(i, j)
# if (cell and not cell.see_behind()) or mask[i,j] == False:
# mask[i, j-1] = False
# grid
# for j in reversed(range(0, agent_pos[1]+1)):
#
# i = agent_pos[0]
# cell = grid.get(i, j)
# if (cell and not cell.see_behind()) or mask[i, j] == False:
# if j < agent_pos[1]:
# # grid
# mask[i,j-1] = False
#
# for i in reversed(range(1, agent_pos[0])):
# # agent -> to the left
# cell = grid.get(i, j)
# if (cell and not cell.see_behind()) or mask[i,j] == False:
# # grid
# mask[i-1, j] = False
# if j < agent_pos[1] and j > 0:
# mask[i, j-1] = False
#
# for i in range(agent_pos[0]+1, grid.width-1):
# # agent -> to the right
# cell = grid.get(i, j)
# if (cell and not cell.see_behind()) or mask[i,j] == False:
# # grid
# mask[i+1, j] = False
# if j < agent_pos[1] and j > 0:
# mask[i, j-1] = False
for j in range(0, grid.height):
for i in range(0, grid.width):
if not mask[i, j]:
grid.set(i, j, None)
return mask
class MiniGridEnv(gym.Env):
"""
2D grid world game environment
"""
metadata = {
'render.modes': ['human', 'rgb_array'],
'video.frames_per_second' : 10
}
# Enumeration of possible actions
class Actions(IntEnum):
# Turn left, turn right, move forward
left = 0
right = 1
forward = 2
# Pick up an object
pickup = 3
# Drop an object
drop = 4
# Toggle/activate an object
toggle = 5
# Done completing task
done = 6
def __init__(
self,
grid_size=None,
width=None,
height=None,
max_steps=100,
see_through_walls=False,
full_obs=False,
seed=None,
agent_view_size=7,
actions=None,
action_space=None,
add_npc_direction=False,
add_npc_point_direction=False,
add_npc_last_prim_action=False,
reward_diminish_factor=0.9,
egocentric_observation=True,
):
# sanity check params for SocialAI experiments
if "SocialAI" in type(self).__name__:
assert egocentric_observation
assert grid_size == 10
assert not see_through_walls
assert max_steps == 80
assert agent_view_size == 7
assert not full_obs
assert add_npc_direction and add_npc_point_direction and add_npc_last_prim_action
self.egocentric_observation = egocentric_observation
if hasattr(self, "lever_active_steps"):
assert self.lever_active_steps == 10
# Can't set both grid_size and width/height
if grid_size:
assert width == None and height == None
width = grid_size
height = grid_size
# Action enumeration for this environment
if actions:
self.actions = actions
else:
self.actions = MiniGridEnv.Actions
# Actions are discrete integer values
if action_space:
self.action_space = action_space
else:
self.action_space = spaces.MultiDiscrete([len(self.actions)])
# Number of cells (width and height) in the agent view
assert agent_view_size % 2 == 1
assert agent_view_size >= 3
self.agent_view_size = agent_view_size
# Number of object dimensions (i.e. number of channels in symbolic image)
self.add_npc_direction = add_npc_direction
self.add_npc_point_direction = add_npc_point_direction
self.add_npc_last_prim_action = add_npc_last_prim_action
self.nb_obj_dims = 3 + 2*bool(not self.egocentric_observation) + int(self.add_npc_direction) + int(self.add_npc_point_direction) + int(self.add_npc_last_prim_action)
# Observations are dictionaries containing an
# encoding of the grid and a textual 'mission' string
self.observation_space = spaces.Box(
low=0,
high=255,
shape=(self.agent_view_size, self.agent_view_size, self.nb_obj_dims),
dtype='uint8'
)
self.observation_space = spaces.Dict({
'image': self.observation_space
})
# Range of possible rewards
self.reward_range = (0, 1)
# Window to use for human rendering mode
self.window = None
# Environment configuration
self.width = width
self.height = height
self.max_steps = max_steps
self.see_through_walls = see_through_walls
self.full_obs = full_obs
self.reward_diminish_factor = reward_diminish_factor
# Current position and direction of the agent
self.agent_pos = None
self.agent_dir = None
# Initialize the RNG
self.seed(seed=seed)
# Initialize the state
self.reset()
def reset(self):
# Current position and direction of the agent
self.agent_pos = None
self.agent_dir = None
# Generate a new random grid at the start of each episode
# To keep the same grid for each episode, call env.seed() with
# the same seed before calling env.reset()
self._gen_grid(self.width, self.height)
# These fields should be defined by _gen_grid
assert self.agent_pos is not None
assert self.agent_dir is not None
# Check that the agent doesn't overlap with an object
start_cell = self.grid.get(*self.agent_pos)
assert start_cell is None or start_cell.can_overlap()
# Item picked up, being carried, initially nothing
self.carrying = None
# Step count since episode start
self.step_count = 0
# Return first observation
obs = self.gen_obs(full_obs=self.full_obs)
return obs
def reset_with_info(self, *args, **kwargs):
obs = self.reset(*args, **kwargs)
info = self.generate_info(done=False, reward=0)
return obs, info
def seed(self, seed=1337):
# Seed the random number generator
self.np_random, _ = seeding.np_random(seed)
return [seed]
def hash(self, size=16):
"""Compute a hash that uniquely identifies the current state of the environment.
:param size: Size of the hashing
"""
sample_hash = hashlib.sha256()
to_encode = [self.grid.encode(), self.agent_pos, self.agent_dir]
for item in to_encode:
sample_hash.update(str(item).encode('utf8'))
return sample_hash.hexdigest()[:size]
@property
def steps_remaining(self):
return self.max_steps - self.step_count
def is_near(self, pos1, pos2):
ax, ay = pos1
wx, wy = pos2
if (ax == wx and abs(ay - wy) == 1) or (ay == wy and abs(ax - wx) == 1):
return True
return False
def get_cell(self, x, y):
return self.grid.get(x, y)
def __str__(self):
"""
Produce a pretty string of the environment's grid along with the agent.
A grid cell is represented by 2-character string, the first one for
the object and the second one for the color.
"""
# Map of object types to short string
OBJECT_TO_STR = {
'wall' : 'W',
'floor' : 'F',
'door' : 'D',
'key' : 'K',
'ball' : 'A',
'box' : 'B',
'goal' : 'G',
'lava' : 'V',
}
# Short string for opened door
OPENDED_DOOR_IDS = '_'
# Map agent's direction to short string
AGENT_DIR_TO_STR = {
0: '>',
1: 'V',
2: '<',
3: '^'
}
str = ''
for j in range(self.grid.height):
for i in range(self.grid.width):
if i == self.agent_pos[0] and j == self.agent_pos[1]:
str += 2 * AGENT_DIR_TO_STR[self.agent_dir]
continue
c = self.grid.get(i, j)
if c == None:
str += ' '
continue
if c.type == 'door':
if c.is_open:
str += '__'
elif c.is_locked:
str += 'L' + c.color[0].upper()
else:
str += 'D' + c.color[0].upper()
continue
str += OBJECT_TO_STR[c.type] + c.color[0].upper()
if j < self.grid.height - 1:
str += '\n'
return str
def _gen_grid(self, width, height):
assert False, "_gen_grid needs to be implemented by each environment"
def _reward(self):
"""
Compute the reward to be given upon success
"""
return 1 - self.reward_diminish_factor * (self.step_count / self.max_steps)
def _rand_int(self, low, high):
"""
Generate random integer in [low,high[
"""
return self.np_random.randint(low, high)
def _rand_float(self, low, high):
"""
Generate random float in [low,high[
"""
return self.np_random.uniform(low, high)
def _rand_bool(self):
"""
Generate random boolean value
"""
return (self.np_random.randint(0, 2) == 0)
def _rand_elem(self, iterable):
"""
Pick a random element in a list
"""
lst = list(iterable)
idx = self._rand_int(0, len(lst))
return lst[idx]
def _rand_subset(self, iterable, num_elems):
"""
Sample a random subset of distinct elements of a list
"""
lst = list(iterable)
assert num_elems <= len(lst)
out = []
while len(out) < num_elems:
elem = self._rand_elem(lst)
lst.remove(elem)
out.append(elem)
return out
def _rand_color(self):
"""
Generate a random color name (string)
"""
return self._rand_elem(COLOR_NAMES)
def _rand_pos(self, xLow, xHigh, yLow, yHigh):
"""
Generate a random (x,y) position tuple
"""
return (
self.np_random.randint(xLow, xHigh),
self.np_random.randint(yLow, yHigh)
)
def find_loc(self,
top=None,
size=None,
reject_fn=None,
max_tries=math.inf,
reject_agent_pos=True,
reject_taken_pos=True
):
"""
Place an object at an empty position in the grid
:param top: top-left position of the rectangle where to place
:param size: size of the rectangle where to place
:param reject_fn: function to filter out potential positions
"""
if top is None:
top = (0, 0)
else:
top = (max(top[0], 0), max(top[1], 0))
if size is None:
size = (self.grid.width, self.grid.height)
num_tries = 0
while True:
# This is to handle with rare cases where rejection sampling
# gets stuck in an infinite loop
if num_tries > max_tries:
raise RecursionError('rejection sampling failed in place_obj')
if num_tries % 10000 == 0 and num_tries > 0:
warnings.warn("num_tries = {}. This is probably an infinite loop. {}".format(num_tries, get_traceback()))
# warnings.warn("num_tries = {}. This is probably an infinite loop.".format(num_tries))
exit()
break
num_tries += 1
pos = np.array((
self._rand_int(top[0], min(top[0] + size[0], self.grid.width)),
self._rand_int(top[1], min(top[1] + size[1], self.grid.height))
))
# Don't place the object on top of another object
if reject_taken_pos:
if self.grid.get(*pos) != None:
continue
# Don't place the object where the agent is
if reject_agent_pos and np.array_equal(pos, self.agent_pos):
continue
# Check if there is a filtering criterion
if reject_fn and reject_fn(self, pos):
continue
break
return pos
def place_obj(self,
obj,
top=None,
size=None,
reject_fn=None,
max_tries=math.inf
):
"""
Place an object at an empty position in the grid
:param top: top-left position of the rectangle where to place
:param size: size of the rectangle where to place
:param reject_fn: function to filter out potential positions
"""
# if top is None:
# top = (0, 0)
# else:
# top = (max(top[0], 0), max(top[1], 0))
#
# if size is None:
# size = (self.grid.width, self.grid.height)
#
# num_tries = 0
#
# while True:
# # This is to handle with rare cases where rejection sampling
# # gets stuck in an infinite loop
# if num_tries > max_tries:
# raise RecursionError('rejection sampling failed in place_obj')
#
# num_tries += 1
#
# pos = np.array((
# self._rand_int(top[0], min(top[0] + size[0], self.grid.width)),
# self._rand_int(top[1], min(top[1] + size[1], self.grid.height))
# ))
#
# # Don't place the object on top of another object
# if self.grid.get(*pos) != None:
# continue
#
# # Don't place the object where the agent is
# if np.array_equal(pos, self.agent_pos):
# continue
#
# # Check if there is a filtering criterion
# if reject_fn and reject_fn(self, pos):
# continue
#
# break
#
# self.grid.set(*pos, obj)
#
# if obj is not None:
# obj.init_pos = pos
# obj.cur_pos = pos
#
# return pos
pos = self.find_loc(
top=top,
size=size,
reject_fn=reject_fn,
max_tries=max_tries
)
if obj is None:
self.grid.set(*pos, obj)
else:
self.put_obj_np(obj, pos)
return pos
def put_obj_np(self, obj, pos):
"""
Put an object at a specific position in the grid
"""
assert isinstance(pos, np.ndarray)
i, j = pos
cell = self.grid.get(i, j)
if cell is not None:
raise ValueError("trying to put {} on {}".format(obj, cell))
self.grid.set(i, j, obj)
obj.init_pos = np.array((i, j))
obj.cur_pos = np.array((i, j))
def put_obj(self, obj, i, j):
"""
Put an object at a specific position in the grid
"""
warnings.warn(
"This function is kept for backwards compatiblity with minigrid. It is recommended to use put_object_np()."
)
raise DeprecationWarning("Deprecated use put_obj_np. (or remove this Warning)")
self.grid.set(i, j, obj)
obj.init_pos = (i, j)
obj.cur_pos = (i, j)
def place_agent(
self,
top=None,
size=None,
rand_dir=True,
max_tries=math.inf
):
"""
Set the agent's starting point at an empty position in the grid
"""
self.agent_pos = None
pos = self.place_obj(None, top, size, max_tries=max_tries)
self.agent_pos = pos
if rand_dir:
self.agent_dir = self._rand_int(0, 4)
return pos
@property
def dir_vec(self):
"""
Get the direction vector for the agent, pointing in the direction
of forward movement.
"""
assert self.agent_dir >= 0 and self.agent_dir < 4
return DIR_TO_VEC[self.agent_dir]
@property
def right_vec(self):
"""
Get the vector pointing to the right of the agent.
"""
dx, dy = self.dir_vec
return np.array((-dy, dx))
@property
def front_pos(self):
"""
Get the position of the cell that is right in front of the agent
"""
return self.agent_pos + self.dir_vec
@property
def back_pos(self):
"""
Get the position of the cell that is right in front of the agent
"""
return self.agent_pos - self.dir_vec
@property
def right_pos(self):
"""
Get the position of the cell that is right in front of the agent
"""
return self.agent_pos + self.right_vec
@property
def left_pos(self):
"""
Get the position of the cell that is right in front of the agent
"""
return self.agent_pos - self.right_vec
def get_view_coords(self, i, j):
"""
Translate and rotate absolute grid coordinates (i, j) into the
agent's partially observable view (sub-grid). Note that the resulting
coordinates may be negative or outside of the agent's view size.
"""
ax, ay = self.agent_pos
dx, dy = self.dir_vec
rx, ry = self.right_vec
# Compute the absolute coordinates of the top-left view corner
sz = self.agent_view_size
hs = self.agent_view_size // 2
tx = ax + (dx * (sz-1)) - (rx * hs)
ty = ay + (dy * (sz-1)) - (ry * hs)
lx = i - tx
ly = j - ty
# Project the coordinates of the object relative to the top-left
# corner onto the agent's own coordinate system
vx = (rx*lx + ry*ly)
vy = -(dx*lx + dy*ly)
return vx, vy
def get_view_exts(self, dir=None, view_size=None, pos=None):
"""
Get the extents of the square set of tiles visible to the agent (or to an npc if specified
Note: the bottom extent indices are not included in the set
"""
# by default compute view exts for agent
if (dir is None) and (view_size is None) and (pos is None):
dir = self.agent_dir
view_size = self.agent_view_size
pos = self.agent_pos
# Facing right
if dir == 0:
topX = pos[0]
topY = pos[1] - view_size // 2
# Facing down
elif dir == 1:
topX = pos[0] - view_size // 2
topY = pos[1]
# Facing left
elif dir == 2:
topX = pos[0] - view_size + 1
topY = pos[1] - view_size // 2
# Facing up
elif dir == 3:
topX = pos[0] - view_size // 2
topY = pos[1] - view_size + 1
else:
assert False, "invalid agent direction: {}".format(dir)
botX = topX + view_size
botY = topY + view_size
return (topX, topY, botX, botY)
def relative_coords(self, x, y):
"""
Check if a grid position belongs to the agent's field of view, and returns the corresponding coordinates
"""
vx, vy = self.get_view_coords(x, y)
if vx < 0 or vy < 0 or vx >= self.agent_view_size or vy >= self.agent_view_size:
return None
return vx, vy
def in_view(self, x, y):
"""
check if a grid position is visible to the agent
"""
return self.relative_coords(x, y) is not None
def agent_sees(self, x, y):
"""
Check if a non-empty grid position is visible to the agent
"""
coordinates = self.relative_coords(x, y)
if coordinates is None:
return False
vx, vy = coordinates
assert not self.full_obs, "agent sees function not implemented with full_obs"
obs = self.gen_obs()
obs_grid, _ = Grid.decode(obs['image'])
obs_cell = obs_grid.get(vx, vy)
world_cell = self.grid.get(x, y)
return obs_cell is not None and obs_cell.type == world_cell.type
def step(self, action):
self.step_count += 1
reward = 0
done = False
# Get the position in front of the agent
fwd_pos = self.front_pos
# Get the contents of the cell in front of the agent
fwd_cell = self.grid.get(*fwd_pos)
# Rotate left
if action == self.actions.left:
self.agent_dir -= 1
if self.agent_dir < 0:
self.agent_dir += 4
# Rotate right
elif action == self.actions.right:
self.agent_dir = (self.agent_dir + 1) % 4
# Move forward
elif action == self.actions.forward:
if fwd_cell != None and fwd_cell.can_push():
fwd_cell.push(push_dir=self.agent_dir, pusher="agent")
if fwd_cell == None or fwd_cell.can_overlap():
self.agent_pos = fwd_pos
if fwd_cell != None and fwd_cell.type == 'goal':
done = True
reward = self._reward()
if fwd_cell != None and fwd_cell.type == 'lava':
done = True
# Pick up an object
elif hasattr(self.actions, "pickup") and action == self.actions.pickup:
if fwd_cell and fwd_cell.can_pickup():
if self.carrying is None:
self.carrying = fwd_cell
self.carrying.cur_pos = np.array([-1, -1])
self.grid.set(*fwd_pos, None)
# Drop an object
elif hasattr(self.actions, "drop") and action == self.actions.drop:
if not fwd_cell and self.carrying:
self.grid.set(*fwd_pos, self.carrying)
self.carrying.cur_pos = fwd_pos
self.carrying = None
# Toggle/activate an object
elif action == self.actions.toggle:
if fwd_cell:
fwd_cell.toggle(self, fwd_pos)
# Done action (not used by default)
elif action == self.actions.done:
pass
elif action in map(int, self.actions):
# action that was added in an inheriting class (ex. talk action)
pass
elif np.isnan(action):
# action skip
pass
else:
assert False, f"unknown action {action}"
if self.step_count >= self.max_steps:
done = True
obs = self.gen_obs(full_obs=self.full_obs)
info = self.generate_info(done, reward)
return obs, reward, done, info
def generate_info(self, done, reward):
success = done and reward > 0
info = {"success": success}
gen_extra_info_dict = self.gen_extra_info() # add stuff needed for textual observations here
assert not any(item in info for item in gen_extra_info_dict), "Duplicate keys found with gen_extra_info"
info = {
**info,
**gen_extra_info_dict,
}
return info
def gen_extra_info(self):
grid, vis_mask = self.gen_obs_grid()
carrying = self.carrying
agent_pos_vx, agent_pos_vy = self.get_view_coords(self.agent_pos[0], self.agent_pos[1])
npc_actions_dict = SocialAINPCActionsDict
extra_info = {
"image": grid.encode(vis_mask),
"vis_mask": vis_mask,
"carrying": carrying,
"agent_pos_vx": agent_pos_vx,
"agent_pos_vy": agent_pos_vy,
"npc_actions_dict": npc_actions_dict
}
return extra_info
def gen_obs_grid(self):
"""
Generate the sub-grid observed by the agent.
This method also outputs a visibility mask telling us which grid
cells the agent can actually see.
"""
topX, topY, botX, botY = self.get_view_exts()
grid = self.grid.slice(topX, topY, self.agent_view_size, self.agent_view_size)
for i in range(self.agent_dir + 1):
grid = grid.rotate_left()
# Process occluders and visibility
# Note that this incurs some performance cost
if not self.see_through_walls:
vis_mask = grid.process_vis(agent_pos=(self.agent_view_size // 2, self.agent_view_size - 1))
else:
vis_mask = np.ones(shape=(grid.width, grid.height), dtype=np.bool)
# Make it so the agent sees what it's carrying
# We do this by placing the carried object at the agent's position
# in the agent's partially observable view
agent_pos = grid.width // 2, grid.height - 1
if self.carrying:
grid.set(*agent_pos, self.carrying)
else:
grid.set(*agent_pos, None)
return grid, vis_mask
def add_agent_to_grid(self, image):
"""
Add agent to symbolic pixel image, used only for full observation
"""
ax, ay = self.agent_pos
image[ax,ay] = [9,9,9,self.agent_dir] # could be made cleaner by creating an Agent_id (here we use Lava_id)
return image
def gen_obs(self, full_obs=False):
"""
Generate the agent's view (partially observable, low-resolution encoding)
Fully observable view can be returned when full_obs is set to True
"""
if full_obs:
image = self.add_agent_to_grid(self.grid.encode())
else:
grid, vis_mask = self.gen_obs_grid()
# Encode the partially observable view into a numpy array
image = grid.encode(vis_mask, absolute_coordinates=not self.egocentric_observation)
assert hasattr(self, 'mission'), "environments must define a textual mission string"
# Observations are dictionaries containing:
# - an image (partially observable view of the environment)
# - the agent's direction/orientation (acting as a compass)
# - a textual mission string (instructions for the agent)
obs = {
'image': image,
'direction': self.agent_dir,
'mission': self.mission
}
return obs
def get_obs_render(self, obs, tile_size=TILE_PIXELS//2):
"""
Render an agent observation for visualization
"""
grid, vis_mask = Grid.decode(obs)
# Render the whole grid
img = grid.render(
tile_size,
agent_pos=(self.agent_view_size // 2, self.agent_view_size - 1),
agent_dir=3,
highlight_mask=vis_mask
)
return img
def render(self, mode='human', close=False, highlight=True, tile_size=TILE_PIXELS, mask_unobserved=False):
"""
Render the whole-grid human view
"""
if mode == 'human' and close:
if self.window:
self.window.close()
return
if mode == 'human' and not self.window:
import gym_minigrid.window
self.window = gym_minigrid.window.Window('gym_minigrid')
self.window.show(block=False)
# Compute which cells are visible to the agent
_, vis_mask = self.gen_obs_grid()
# Compute the world coordinates of the bottom-left corner
# of the agent's view area
f_vec = self.dir_vec
r_vec = self.right_vec
top_left = self.agent_pos + f_vec * (self.agent_view_size-1) - r_vec * (self.agent_view_size // 2)
# Mask of which cells to highlight
highlight_mask = np.zeros(shape=(self.width, self.height), dtype=np.bool)
# For each cell in the visibility mask
for vis_j in range(0, self.agent_view_size):
for vis_i in range(0, self.agent_view_size):
# If this cell is not visible, don't highlight it
if not vis_mask[vis_i, vis_j]:
continue
# Compute the world coordinates of this cell
abs_i, abs_j = top_left - (f_vec * vis_j) + (r_vec * vis_i)
if abs_i < 0 or abs_i >= self.width:
continue
if abs_j < 0 or abs_j >= self.height:
continue
# Mark this cell to be highlighted
highlight_mask[abs_i, abs_j] = True
# Render the whole grid
img = self.grid.render(
tile_size,
self.agent_pos,
self.agent_dir,
highlight_mask=highlight_mask if highlight else None,
mask_unobserved=mask_unobserved
)
if mode == 'human':
# self.window.set_caption(self.mission)
self.window.show_img(img)
return img
def get_mission(self):
return self.mission
def close(self):
if self.window:
self.window.close()
return
def gen_text_obs(self):
grid, vis_mask = self.gen_obs_grid()
# Encode the partially observable view into a numpy array
image = grid.encode(vis_mask)
# (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color], state)
# State, 0: open, 1: closed, 2: locked
IDX_TO_COLOR = dict(zip(COLOR_TO_IDX.values(), COLOR_TO_IDX.keys()))
IDX_TO_OBJECT = dict(zip(OBJECT_TO_IDX.values(), OBJECT_TO_IDX.keys()))
list_textual_descriptions = []
if self.carrying is not None:
list_textual_descriptions.append("You carry a {} {}".format(self.carrying.color, self.carrying.type))
agent_pos_vx, agent_pos_vy = self.get_view_coords(self.agent_pos[0], self.agent_pos[1])
view_field_dictionary = dict()
for i in range(image.shape[0]):
for j in range(image.shape[1]):
if image[i][j][0] != 0 and image[i][j][0] != 1 and image[i][j][0] != 2:
if i not in view_field_dictionary.keys():
view_field_dictionary[i] = dict()
view_field_dictionary[i][j] = image[i][j]
else:
view_field_dictionary[i][j] = image[i][j]
# Find the wall if any
# We describe a wall only if there is no objects between the agent and the wall in straight line
# Find wall in front
add_wall_descr = False
if add_wall_descr:
j = agent_pos_vy - 1
object_seen = False
while j >= 0 and not object_seen:
if image[agent_pos_vx][j][0] != 0 and image[agent_pos_vx][j][0] != 1:
if image[agent_pos_vx][j][0] == 2:
list_textual_descriptions.append(
f"A wall is {agent_pos_vy - j} steps in front of you. \n") # forward
object_seen = True
else:
object_seen = True
j -= 1
# Find wall left
i = agent_pos_vx - 1
object_seen = False
while i >= 0 and not object_seen:
if image[i][agent_pos_vy][0] != 0 and image[i][agent_pos_vy][0] != 1:
if image[i][agent_pos_vy][0] == 2:
list_textual_descriptions.append(
f"A wall is {agent_pos_vx - i} steps to the left. \n") # left
object_seen = True
else:
object_seen = True
i -= 1
# Find wall right
i = agent_pos_vx + 1
object_seen = False
while i < image.shape[0] and not object_seen:
if image[i][agent_pos_vy][0] != 0 and image[i][agent_pos_vy][0] != 1:
if image[i][agent_pos_vy][0] == 2:
list_textual_descriptions.append(
f"A wall is {i - agent_pos_vx} steps to the right. \n") # right
object_seen = True
else:
object_seen = True
i += 1
# list_textual_descriptions.append("You see the following objects: ")
# returns the position of seen objects relative to you
for i in view_field_dictionary.keys():
for j in view_field_dictionary[i].keys():
if i != agent_pos_vx or j != agent_pos_vy:
object = view_field_dictionary[i][j]
front_dist = agent_pos_vy - j
left_right_dist = i-agent_pos_vx
loc_descr = ""
if front_dist == 1 and left_right_dist == 0:
loc_descr += "Right in front of you "
elif left_right_dist == 1 and front_dist == 0:
loc_descr += "Just to the right of you"
elif left_right_dist == -1 and front_dist == 0:
loc_descr += "Just to the left of you"
else:
front_str = str(front_dist)+" steps in front of you " if front_dist > 0 else ""
loc_descr += front_str
suff = "s" if abs(left_right_dist) > 0 else ""
and_ = "and" if loc_descr != "" else ""
if left_right_dist < 0:
left_right_str = f"{and_} {-left_right_dist} step{suff} to the left"
loc_descr += left_right_str
elif left_right_dist > 0:
left_right_str = f"{and_} {left_right_dist} step{suff} to the right"
loc_descr += left_right_str
else:
left_right_str = ""
loc_descr += left_right_str
loc_descr += f" there is a "
obj_type = IDX_TO_OBJECT[object[0]]
if obj_type == "npc":
IDX_TO_STATE = {0: 'friendly', 1: 'antagonistic'}
description = f"{IDX_TO_STATE[object[2]]} {IDX_TO_COLOR[object[1]]} peer. "
# gaze
gaze_dir = {
0: "towards you",
1: "to the left of you",
2: "in the same direction as you",
3: "to the right of you",
}
description += f"It is looking {gaze_dir[object[3]]}. "
# point
point_dir = {
0: "towards you",
1: "to the left of you",
2: "in the same direction as you",
3: "to the right of you",
}
if object[4] != 255:
description += f"It is pointing {point_dir[object[4]]}. "
# last action
last_action = {v: k for k, v in SocialAINPCActionsDict.items()}[object[5]]
last_action = {
"go_forward": "foward",
"rotate_left": "turn left",
"rotate_right": "turn right",
"toggle_action": "toggle",
"point_stop_point": "stop pointing",
"point_E": "",
"point_S": "",
"point_W": "",
"point_N": "",
"stop_point": "stop pointing",
"no_op": ""
}[last_action]
if last_action not in ["no_op", ""]:
description += f"It's last action is {last_action}. "
elif obj_type in ["switch", "apple", "generatorplatform", "marble", "marbletee", "fence"]:
if obj_type == "switch":
# assumes that Switch.no_light == True
assert object[-1] == 0
description = f"{IDX_TO_COLOR[object[1]]} {IDX_TO_OBJECT[object[0]]} "
assert object[2:].mean() == 0
elif obj_type == "lockablebox":
IDX_TO_STATE = {0: 'open', 1: 'closed', 2: 'locked'}
description = f"{IDX_TO_STATE[object[2]]} {IDX_TO_COLOR[object[1]]} {IDX_TO_OBJECT[object[0]]} "
assert object[3:].mean() == 0
elif obj_type == "applegenerator":
IDX_TO_STATE = {1: 'square', 2: 'round'}
description = f"{IDX_TO_STATE[object[2]]} {IDX_TO_COLOR[object[1]]} {IDX_TO_OBJECT[object[0]]} "
assert object[3:].mean() == 0
elif obj_type == "remotedoor":
IDX_TO_STATE = {0: 'open', 1: 'closed'}
description = f"{IDX_TO_STATE[object[2]]} {IDX_TO_COLOR[object[1]]} {IDX_TO_OBJECT[object[0]]} "
assert object[3:].mean() == 0
elif obj_type == "door":
IDX_TO_STATE = {0: 'open', 1: 'closed', 2: 'locked'}
description = f"{IDX_TO_STATE[object[2]]} {IDX_TO_COLOR[object[1]]} {IDX_TO_OBJECT[object[0]]} "
assert object[3:].mean() == 0
elif obj_type == "lever":
IDX_TO_STATE = {1: 'activated', 0: 'unactivated'}
if object[3] == 255:
countdown_txt = ""
else:
countdown_txt = f"with {object[3]} timesteps left. "
description = f"{IDX_TO_STATE[object[2]]} {IDX_TO_COLOR[object[1]]} {IDX_TO_OBJECT[object[0]]} {countdown_txt}"
assert object[4:].mean() == 0
else:
raise ValueError(f"Undefined object type {obj_type}")
full_destr = loc_descr + description + "\n"
list_textual_descriptions.append(full_destr)
if len(list_textual_descriptions) == 0:
list_textual_descriptions.append("\n")
return {'descriptions': list_textual_descriptions}
class MultiModalMiniGridEnv(MiniGridEnv):
grammar = None
def reset(self, *args, **kwargs):
obs = super().reset()
self.append_existing_utterance_to_history()
obs = self.add_utterance_to_observation(obs)
self.reset_utterance()
return obs
def append_existing_utterance_to_history(self):
if self.utterance != self.empty_symbol:
if self.utterance.startswith(self.empty_symbol):
self.utterance_history += self.utterance[len(self.empty_symbol):]
else:
assert self.utterance == self.beginning_string
self.utterance_history += self.utterance
def add_utterance_to_observation(self, obs):
obs["utterance"] = self.utterance
obs["utterance_history"] = self.utterance_history
obs["mission"] = "Hidden"
return obs
def reset_utterance(self):
# set utterance to empty indicator
self.utterance = self.empty_symbol
def render(self, *args, show_dialogue=True, **kwargs):
obs = super().render(*args, **kwargs)
if args[0] == 'human':
# draw text to the side of the image
self.window.clear_text() # erase previous text
if show_dialogue:
self.window.set_caption(self.full_conversation)
# self.window.ax.set_title("correct color: {}".format(self.box.target_color), loc="left", fontsize=10)
if self.outcome_info:
color = None
if "SUCCESS" in self.outcome_info:
color = "lime"
elif "FAILURE" in self.outcome_info:
color = "red"
self.window.add_text(*(0.01, 0.85, self.outcome_info),
**{'fontsize': 15, 'color': color, 'weight': "bold"})
self.window.show_img(obs) # re-draw image to add changes to window
return obs
def add_obstacles(self):
self.obstacles = self.parameters.get("Obstacles", "No") if self.parameters else "No"
if self.obstacles != "No":
n_stumps_range = {
"A_bit": (1, 2),
"Medium": (3, 4),
"A_lot": (5, 6),
}[self.obstacles]
n_stumps = random.randint(*n_stumps_range)
for _ in range(n_stumps):
self.wall_start_x = self._rand_int(1, self.current_width - 2)
self.wall_start_y = self._rand_int(1, self.current_height - 2)
if random.choice([True, False]):
self.grid.horz_wall(
x=self.wall_start_x,
y=self.wall_start_y,
length=1
)
else:
self.grid.horz_wall(
x=self.wall_start_x,
y=self.wall_start_y,
length=1
)