Spaces:
Sleeping
Sleeping
from gym_minigrid.minigrid import * | |
from gym_minigrid.register import register | |
class SesameGrammar(object): | |
templates = ["Open", "Who is", "Where is"] | |
things = ["the exit", "sesame", "the chest", "him", "that"] | |
grammar_action_space = spaces.MultiDiscrete([len(templates), len(things)]) | |
def construct_utterance(cls, action): | |
return cls.templates[int(action[0])] + " " + cls.things[int(action[1])] + "." | |
class GoToDoorSesameEnv(MultiModalMiniGridEnv): | |
""" | |
Environment in which the agent is instructed to go to a given object | |
named using an English text string | |
""" | |
def __init__( | |
self, | |
size=5 | |
): | |
assert size >= 5 | |
super().__init__( | |
grid_size=size, | |
max_steps=5*size**2, | |
# Set this to True for maximum speed | |
see_through_walls=True, | |
actions=MiniGridEnv.Actions, | |
action_space=spaces.MultiDiscrete([ | |
len(MiniGridEnv.Actions), | |
*SesameGrammar.grammar_action_space.nvec | |
]) | |
) | |
def _gen_grid(self, width, height): | |
# Create the grid | |
self.grid = Grid(width, height) | |
# Randomly vary the room width and height | |
width = self._rand_int(5, width+1) | |
height = self._rand_int(5, height+1) | |
# Generate the surrounding walls | |
self.grid.wall_rect(0, 0, width, height) | |
# Generate the 4 doors at random positions | |
doorPos = (self._rand_int(2, width-2), 0) | |
doorColors = self._rand_elem(COLOR_NAMES) | |
self.grid.set(*doorPos, Door(doorColors)) | |
# doorPos = [] | |
# doorPos.append((self._rand_int(2, width-2), 0)) | |
# | |
# # Generate the door colors | |
# doorColors = [] | |
# while len(doorColors) < len(doorPos): | |
# color = self._rand_elem(COLOR_NAMES) | |
# if color in doorColors: | |
# continue | |
# doorColors.append(color) | |
# | |
# # Place the doors in the grid | |
# for idx, pos in enumerate(doorPos): | |
# color = doorColors[idx] | |
# self.grid.set(*pos, Door(color)) | |
# Randomize the agent start position and orientation | |
self.place_agent(size=(width, height)) | |
# Select a random target door | |
# doorIdx = self._rand_int(0, len(doorPos)) | |
# self.target_pos = doorPos[doorIdx] | |
# self.target_color = doorColors[doorIdx] | |
self.target_pos = doorPos | |
self.target_color = doorColors | |
# Generate the mission string | |
self.mission = 'go to the %s door' % self.target_color | |
# Initialize the dialogue string | |
self.dialogue = "This is what you hear. \n" | |
def gen_obs(self): | |
obs = super().gen_obs() | |
# add dialogue to obs | |
obs["dialogue"] = self.dialogue | |
return obs | |
def step(self, action): | |
p_action = action[0] | |
utterance_action = action[1:] | |
assert len(set(np.isnan(utterance_action))) == 1 | |
speak_flag = not all(np.isnan(utterance_action)) | |
obs, reward, done, info = super().step(p_action) | |
ax, ay = self.agent_pos | |
tx, ty = self.target_pos | |
# Don't let the agent open any of the doors | |
if p_action == self.actions.toggle: | |
done = True | |
# magic words if front of the door | |
if speak_flag: | |
utterance = SesameGrammar.construct_utterance(utterance_action) | |
self.dialogue += "YOU: " + utterance + "\n" | |
if utterance == SesameGrammar.construct_utterance([0, 1]): | |
if (ax == tx and abs(ay - ty) == 1) or (ay == ty and abs(ax - tx) == 1): | |
reward = self._reward() | |
done = True | |
# Reward performing done action in front of the target door | |
# if p_action == self.actions.done: | |
# if (ax == tx and abs(ay - ty) == 1) or (ay == ty and abs(ax - tx) == 1): | |
# reward = self._reward() | |
# done = True | |
return obs, reward, done, info | |
def render(self, *args, **kwargs): | |
obs = super().render(*args, **kwargs) | |
self.window.set_caption(self.dialogue, [ | |
"Gandalf:", | |
"Jack:", | |
"John:", | |
"Where is the exit", | |
"Open sesame", | |
]) | |
return obs | |
class GoToDoorSesame8x8Env(GoToDoorSesameEnv): | |
def __init__(self): | |
super().__init__(size=8) | |
class GoToDoorSesame6x6Env(GoToDoorSesameEnv): | |
def __init__(self): | |
super().__init__(size=6) | |
register( | |
id='MiniGrid-GoToDoorSesame-5x5-v0', | |
entry_point='gym_minigrid.envs:GoToDoorSesameEnv' | |
) | |
register( | |
id='MiniGrid-GoToDoorSesame-6x6-v0', | |
entry_point='gym_minigrid.envs:GoToDoorSesame6x6Env' | |
) | |
register( | |
id='MiniGrid-GoToDoorSesame-8x8-v0', | |
entry_point='gym_minigrid.envs:GoToDoorSesame8x8Env' | |
) | |