Spaces:
Sleeping
Sleeping
import numpy as np | |
from gym_minigrid.minigrid import * | |
from gym_minigrid.register import register | |
import time | |
from collections import deque | |
class Peer(NPC): | |
""" | |
A dancing NPC that the agent has to copy | |
""" | |
def __init__(self, color, name, env, knowledgeable=False): | |
super().__init__(color) | |
self.name = name | |
self.npc_dir = 1 # NPC initially looks downward | |
self.npc_type = 0 | |
self.env = env | |
self.knowledgeable = knowledgeable | |
self.npc_actions = [] | |
self.dancing_step_idx = 0 | |
self.actions = MiniGridEnv.Actions | |
self.add_npc_direction = True | |
self.available_moves = [self.rotate_left, self.rotate_right, self.go_forward, self.toggle_action] | |
self.exited = False | |
def step(self): | |
if self.exited: | |
return | |
if all(np.array(self.cur_pos) == np.array(self.env.door_pos)): | |
# disappear | |
self.env.grid.set(*self.cur_pos, self.env.object) | |
self.cur_pos = np.array([np.nan, np.nan]) | |
# close door | |
self.env.object.toggle(self.env, self.cur_pos) | |
# reset switches door | |
for s in self.env.switches: | |
s.is_on = False | |
# update door | |
self.env.update_door_lock() | |
self.exited = True | |
elif self.knowledgeable: | |
if self.env.object.is_locked: | |
first_wrong_id = np.where(self.env.get_selected_password() != self.env.password)[0][0] | |
print("first_wrong_id:", first_wrong_id) | |
goal_pos = self.env.switches_pos[first_wrong_id] | |
act = self.path_to_toggle_pos(goal_pos) | |
act() | |
else: | |
if all(self.front_pos == self.env.door_pos) and self.env.object.is_open: | |
self.go_forward() | |
else: | |
act = self.path_to_toggle_pos(self.env.door_pos) | |
act() | |
else: | |
self.env._rand_elem(self.available_moves)() | |
self.env.update_door_lock() | |
class SpyingGrammar(object): | |
templates = ["Move your", "Shake your"] | |
things = ["body", "head"] | |
grammar_action_space = spaces.MultiDiscrete([len(templates), len(things)]) | |
def construct_utterance(cls, action): | |
return cls.templates[int(action[0])] + " " + cls.things[int(action[1])] + " " | |
class SpyingEnv(MultiModalMiniGridEnv): | |
""" | |
Environment in which the agent is instructed to go to a given object | |
named using an English text string | |
""" | |
def __init__( | |
self, | |
size=5, | |
diminished_reward=True, | |
step_penalty=False, | |
knowledgeable=False, | |
hard_password=False, | |
max_steps=None, | |
n_switches=3 | |
): | |
assert size >= 5 | |
self.empty_symbol = "NA \n" | |
self.diminished_reward = diminished_reward | |
self.step_penalty = step_penalty | |
self.knowledgeable = knowledgeable | |
self.hard_password = hard_password | |
self.n_switches = n_switches | |
super().__init__( | |
grid_size=size, | |
max_steps=max_steps or 5*size**2, | |
# Set this to True for maximum speed | |
see_through_walls=True, | |
actions=MiniGridEnv.Actions, | |
action_space=spaces.MultiDiscrete([ | |
len(MiniGridEnv.Actions), | |
*SpyingGrammar.grammar_action_space.nvec | |
]), | |
add_npc_direction=True | |
) | |
print({ | |
"size": size, | |
"diminished_reward": diminished_reward, | |
"step_penalty": step_penalty, | |
}) | |
def get_selected_password(self): | |
return np.array([int(s.is_on) for s in self.switches]) | |
def _gen_grid(self, width, height): | |
# Create the grid | |
self.grid = Grid(width, height, nb_obj_dims=4) | |
# Randomly vary the room width and height | |
width = self._rand_int(5, width+1) | |
height = self._rand_int(5, height+1) | |
self.wall_x = width - 1 | |
self.wall_y = height - 1 | |
# Generate the surrounding walls | |
self.grid.wall_rect(0, 0, width, height) | |
door_color = self._rand_elem(COLOR_NAMES) | |
wall_for_door = self._rand_int(1, 4) | |
if wall_for_door < 2: | |
w = self._rand_int(1, width-1) | |
h = height-1 if wall_for_door == 0 else 0 | |
else: | |
w = width-1 if wall_for_door == 3 else 0 | |
h = self._rand_int(1, height-1) | |
assert h != height-1 # door mustn't be on the bottom wall | |
self.door_pos = (w, h) | |
self.door = Door(door_color, is_locked=True) | |
self.grid.set(*self.door_pos, self.door) | |
# add the switches | |
self.switches = [] | |
self.switches_pos = [] | |
for i in range(self.n_switches): | |
c = COLOR_NAMES[i] | |
pos = np.array([i+1, height-1]) | |
sw = Switch(c) | |
self.grid.set(*pos, sw) | |
self.switches.append(sw) | |
self.switches_pos.append(pos) | |
# sample password | |
if self.hard_password: | |
self.password = np.array([self._rand_int(0, 2) for _ in range(self.n_switches)]) | |
else: | |
idx = self._rand_int(0, self.n_switches) | |
self.password = np.zeros(self.n_switches) | |
self.password[idx] = 1.0 | |
# Set a randomly coloured Dancer NPC | |
color = self._rand_elem(COLOR_NAMES) | |
self.peer = Peer(color, "Jim", self, knowledgeable=self.knowledgeable) | |
# Place it on the middle left side of the room | |
peer_pos = np.array((self._rand_int(1, width - 1), self._rand_int(1, height - 1))) | |
self.grid.set(*peer_pos, self.peer) | |
self.peer.init_pos = peer_pos | |
self.peer.cur_pos = peer_pos | |
# Randomize the agent's start position and orientation | |
self.place_agent(size=(width, height)) | |
# Generate the mission string | |
self.mission = 'exit the room' | |
# Dummy beginning string | |
self.beginning_string = "This is what you hear. \n" | |
self.utterance = self.beginning_string | |
# utterance appended at the end of each step | |
self.utterance_history = "" | |
# used for rendering | |
self.conversation = self.utterance | |
def update_door_lock(self): | |
if np.array_equal(self.get_selected_password(), self.password): | |
self.door.is_locked = False | |
else: | |
self.door.is_locked = True | |
self.door.is_open = False | |
def step(self, action): | |
p_action = action[0] | |
utterance_action = action[1:] | |
obs, reward, done, info = super().step(p_action) | |
self.update_door_lock() | |
print("pass:", self.password) | |
if p_action == self.actions.done: | |
done = True | |
self.peer.step() | |
if all(self.agent_pos == self.door_pos): | |
done = True | |
if self.peer.exited: | |
# only give reward of both exited | |
reward = self._reward() | |
# discount | |
if self.step_penalty: | |
reward = reward - 0.01 | |
# fill observation with text | |
self.append_existing_utterance_to_history() | |
obs = self.add_utterance_to_observation(obs) | |
self.reset_utterance() | |
return obs, reward, done, info | |
def _reward(self): | |
if self.diminished_reward: | |
return super()._reward() | |
else: | |
return 1.0 | |
def render(self, *args, **kwargs): | |
obs = super().render(*args, **kwargs) | |
print("conversation:\n", self.conversation) | |
print("utterance_history:\n", self.utterance_history) | |
self.window.set_caption(self.conversation, [self.peer.name]) | |
return obs | |
class Spying8x8Env(SpyingEnv): | |
def __init__(self): | |
super().__init__(size=8) | |
class Spying6x6Env(SpyingEnv): | |
def __init__(self): | |
super().__init__(size=6) | |
# knowledgeable | |
class SpyingKnowledgeableEnv(SpyingEnv): | |
def __init__(self): | |
super().__init__(size=5, knowledgeable=True) | |
class SpyingKnowledgeable6x6Env(SpyingEnv): | |
def __init__(self): | |
super().__init__(size=6, knowledgeable=True) | |
class SpyingKnowledgeable8x8Env(SpyingEnv): | |
def __init__(self): | |
super().__init__(size=8, knowledgeable=True) | |
class SpyingKnowledgeableHardPassword8x8Env(SpyingEnv): | |
def __init__(self): | |
super().__init__(size=8, knowledgeable=True, hard_password=True) | |
class Spying508x8Env(SpyingEnv): | |
def __init__(self): | |
super().__init__(size=8, max_steps=50) | |
class SpyingKnowledgeable508x8Env(SpyingEnv): | |
def __init__(self): | |
super().__init__(size=8, knowledgeable=True, max_steps=50) | |
class SpyingKnowledgeableHardPassword508x8Env(SpyingEnv): | |
def __init__(self): | |
super().__init__(size=8, knowledgeable=True, hard_password=True, max_steps=50) | |
class SpyingKnowledgeable1008x8Env(SpyingEnv): | |
def __init__(self): | |
super().__init__(size=8, knowledgeable=True, max_steps=100) | |
class SpyingKnowledgeable100OneSwitch8x8Env(SpyingEnv): | |
def __init__(self): | |
super().__init__(size=8, knowledgeable=True, max_steps=100, n_switches=1) | |
class SpyingKnowledgeable50OneSwitch5x5Env(SpyingEnv): | |
def __init__(self): | |
super().__init__(size=5, knowledgeable=True, max_steps=50, n_switches=1) | |
class SpyingKnowledgeable505x5Env(SpyingEnv): | |
def __init__(self): | |
super().__init__(size=5, knowledgeable=True, max_steps=50, n_switches=3) | |
class SpyingKnowledgeable50TwoSwitches8x8Env(SpyingEnv): | |
def __init__(self): | |
super().__init__(size=8, knowledgeable=True, max_steps=50, n_switches=2) | |
class SpyingKnowledgeable50TwoSwitchesHard8x8Env(SpyingEnv): | |
def __init__(self): | |
super().__init__(size=8, knowledgeable=True, max_steps=50, n_switches=2, hard_password=True) | |
class SpyingKnowledgeable100TwoSwitches8x8Env(SpyingEnv): | |
def __init__(self): | |
super().__init__(size=8, knowledgeable=True, max_steps=100, n_switches=2) | |
class SpyingKnowledgeable100TwoSwitchesHard8x8Env(SpyingEnv): | |
def __init__(self): | |
super().__init__(size=8, knowledgeable=True, max_steps=100, n_switches=2, hard_password=True) | |
register( | |
id='MiniGrid-Spying-5x5-v0', | |
entry_point='gym_minigrid.envs:SpyingEnv' | |
) | |
register( | |
id='MiniGrid-Spying-6x6-v0', | |
entry_point='gym_minigrid.envs:Spying6x6Env' | |
) | |
register( | |
id='MiniGrid-Spying-8x8-v0', | |
entry_point='gym_minigrid.envs:Spying8x8Env' | |
) | |
register( | |
id='MiniGrid-SpyingKnowledgeable-5x5-v0', | |
entry_point='gym_minigrid.envs:SpyingKnowledgeableEnv' | |
) | |
register( | |
id='MiniGrid-SpyingKnowledgeable-6x6-v0', | |
entry_point='gym_minigrid.envs:SpyingKnowledgeable6x6Env' | |
) | |
register( | |
id='MiniGrid-SpyingKnowledgeable-8x8-v0', | |
entry_point='gym_minigrid.envs:SpyingKnowledgeable8x8Env' | |
) | |
register( | |
id='MiniGrid-SpyingKnowledgeableHardPassword-8x8-v0', | |
entry_point='gym_minigrid.envs:SpyingKnowledgeableHardPassword8x8Env' | |
) | |
# max len 50 | |
register( | |
id='MiniGrid-Spying50-8x8-v0', | |
entry_point='gym_minigrid.envs:Spying508x8Env' | |
) | |
register( | |
id='MiniGrid-SpyingKnowledgeable50-8x8-v0', | |
entry_point='gym_minigrid.envs:SpyingKnowledgeable508x8Env' | |
) | |
register( | |
id='MiniGrid-SpyingKnowledgeableHardPassword50-8x8-v0', | |
entry_point='gym_minigrid.envs:SpyingKnowledgeableHardPassword508x8Env' | |
) | |
# max len 100 | |
register( | |
id='MiniGrid-SpyingKnowledgeable100-8x8-v0', | |
entry_point='gym_minigrid.envs:SpyingKnowledgeable1008x8Env' | |
) | |
# max len OneSwitch | |
register( | |
id='MiniGrid-SpyingKnowledgeable100OneSwitch-8x8-v0', | |
entry_point='gym_minigrid.envs:SpyingKnowledgeable100OneSwitch8x8Env' | |
) | |
register( | |
id='MiniGrid-SpyingKnowledgeable50OneSwitch-5x5-v0', | |
entry_point='gym_minigrid.envs:SpyingKnowledgeable50OneSwitch5x5Env' | |
) | |
register( | |
id='MiniGrid-SpyingUnknowledgeable50OneSwitch-5x5-v0', | |
entry_point='gym_minigrid.envs:SpyingUnknowledgeable50OneSwitch5x5Env' | |
) | |
register( | |
id='MiniGrid-SpyingKnowledgeable50-5x5-v0', | |
entry_point='gym_minigrid.envs:SpyingKnowledgeable505x5Env' | |
) | |
register( | |
id='MiniGrid-SpyingKnowledgeable50TwoSwitches-8x8-v0', | |
entry_point='gym_minigrid.envs:SpyingKnowledgeable50TwoSwitches8x8Env' | |
) | |
register( | |
id='MiniGrid-SpyingKnowledgeable50TwoSwitchesHard-8x8-v0', | |
entry_point='gym_minigrid.envs:SpyingKnowledgeable50TwoSwitchesHard8x8Env' | |
) | |
register( | |
id='MiniGrid-SpyingKnowledgeable100TwoSwitches-8x8-v0', | |
entry_point='gym_minigrid.envs:SpyingKnowledgeable100TwoSwitches8x8Env' | |
) | |
register( | |
id='MiniGrid-SpyingKnowledgeable100TwoSwitchesHard-8x8-v0', | |
entry_point='gym_minigrid.envs:SpyingKnowledgeable100TwoSwitchesHard8x8Env' | |
) | |