Spaces:
Running
Running
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.distributions.categorical import Categorical | |
import torch_ac | |
from utils.other import init_params | |
class ACModel(nn.Module, torch_ac.RecurrentACModel): | |
def __init__(self, obs_space, action_space, use_memory=False, use_text=False, use_dialogue=False, input_size=3): | |
super().__init__() | |
# store config | |
self.config = locals() | |
# Decide which components are enabled | |
self.use_text = use_text | |
self.use_memory = use_memory | |
self.env_action_space = action_space | |
self.model_raw_action_space = action_space | |
self.input_size = input_size | |
if use_dialogue: | |
raise NotImplementedError("This model does not support dialogue inputs yet") | |
# Define image embedding | |
self.image_conv = nn.Sequential( | |
nn.Conv2d(self.input_size, 16, (2, 2)), | |
nn.ReLU(), | |
nn.MaxPool2d((2, 2)), | |
nn.Conv2d(16, 32, (2, 2)), | |
nn.ReLU(), | |
nn.Conv2d(32, 64, (2, 2)), | |
nn.ReLU() | |
) | |
n = obs_space["image"][0] | |
m = obs_space["image"][1] | |
self.image_embedding_size = ((n-1)//2-2)*((m-1)//2-2)*64 | |
# Define memory | |
if self.use_memory: | |
self.memory_rnn = nn.LSTMCell(self.image_embedding_size, self.semi_memory_size) | |
# Define text embedding | |
if self.use_text: | |
self.word_embedding_size = 32 | |
self.word_embedding = nn.Embedding(obs_space["text"], self.word_embedding_size) | |
self.text_embedding_size = 128 | |
self.text_rnn = nn.GRU(self.word_embedding_size, self.text_embedding_size, batch_first=True) | |
# Resize image embedding | |
self.embedding_size = self.semi_memory_size | |
if self.use_text: | |
self.embedding_size += self.text_embedding_size | |
# Define actor's model | |
self.actor = nn.Sequential( | |
nn.Linear(self.embedding_size, 64), | |
nn.Tanh(), | |
nn.Linear(64, action_space.nvec[0]) | |
) | |
# Define critic's model | |
self.critic = nn.Sequential( | |
nn.Linear(self.embedding_size, 64), | |
nn.Tanh(), | |
nn.Linear(64, 1) | |
) | |
# Initialize parameters correctly | |
self.apply(init_params) | |
def memory_size(self): | |
return 2*self.semi_memory_size | |
def semi_memory_size(self): | |
return self.image_embedding_size | |
def forward(self, obs, memory, return_embeddings=False): | |
x = obs.image.transpose(1, 3).transpose(2, 3) | |
x = self.image_conv(x) | |
x = x.reshape(x.shape[0], -1) | |
if self.use_memory: | |
hidden = (memory[:, :self.semi_memory_size], memory[:, self.semi_memory_size:]) | |
hidden = self.memory_rnn(x, hidden) | |
embedding = hidden[0] | |
memory = torch.cat(hidden, dim=1) | |
else: | |
embedding = x | |
if self.use_text: | |
embed_text = self._get_embed_text(obs.text) | |
embedding = torch.cat((embedding, embed_text), dim=1) | |
x = self.actor(embedding) | |
dist = Categorical(logits=F.log_softmax(x, dim=1)) | |
x = self.critic(embedding) | |
value = x.squeeze(1) | |
if return_embeddings: | |
return [dist], value, memory, None | |
else: | |
return [dist], value, memory | |
# def sample_action(self, dist): | |
# return dist.sample() | |
# | |
# def calculate_log_probs(self, dist, action): | |
# return dist.log_prob(action) | |
def calculate_action_gradient_masks(self, action): | |
"""Always train""" | |
mask = torch.ones_like(action).detach() | |
assert action.shape == mask.shape | |
return mask | |
def sample_action(self, dist): | |
return torch.stack([d.sample() for d in dist], dim=1) | |
def calculate_log_probs(self, dist, action): | |
return torch.stack([d.log_prob(action[:, i]) for i, d in enumerate(dist)], dim=1) | |
def calculate_action_masks(self, action): | |
mask = torch.ones_like(action) | |
assert action.shape == mask.shape | |
return mask | |
def construct_final_action(self, action): | |
return action | |
def _get_embed_text(self, text): | |
_, hidden = self.text_rnn(self.word_embedding(text)) | |
return hidden[-1] | |
def get_config_dict(self): | |
del self.config['__class__'] | |
self.config['self'] = str(self.config['self']) | |
self.config['action_space'] = self.config['action_space'].nvec.tolist() | |
return self.config | |