File size: 9,422 Bytes
97ec4dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace NLP Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""SQUAD: The Stanford Question Answering Dataset."""

from __future__ import absolute_import, division, print_function

import json
import logging
import os

import nltk
nltk.download('punkt')

import nlp


_CITATION = """\
@article{2016arXiv160605250R,
       author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev},
                 Konstantin and {Liang}, Percy},
        title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}",
      journal = {arXiv e-prints},
         year = 2016,
          eid = {arXiv:1606.05250},
        pages = {arXiv:1606.05250},
archivePrefix = {arXiv},
       eprint = {1606.05250},
}
"""

_DESCRIPTION = """\
Stanford Question Answering Dataset (SQuAD) is a reading comprehension \
dataset, consisting of questions posed by crowdworkers on a set of Wikipedia \
articles, where the answer to every question is a segment of text, or span, \
from the corresponding reading passage, or the question might be unanswerable.
"""

QG_FORMATS = [
    "prepend",
    "highlight",
    "prepend_highlight",
]


class SquadMultitaskConfig(nlp.BuilderConfig):
    """BuilderConfig for SQUAD."""

    def __init__(self, qg_format="highlight", **kwargs):
        """BuilderConfig for SQUAD.

    Args:
      **kwargs: keyword arguments forwarded to super.
    """
        super(SquadMultitaskConfig, self).__init__(**kwargs)
        self.qg_format = qg_format


class SquadMultitask(nlp.GeneratorBasedBuilder):
    """SQUAD: The Stanford Question Answering Dataset. Version 1.1."""

    _URL = "https://rajpurkar.github.io/SQuAD-explorer/dataset/"
    _DEV_FILE = "dev-v1.1.json"
    _TRAINING_FILE = "train-v1.1.json"

    BUILDER_CONFIGS = [
        SquadMultitaskConfig(
            name=f"{format_}_qg_format",
            version=nlp.Version("1.0.0", "New split API (https://tensorflow.org/datasets/splits)"),
            description="Plain text",
            qg_format=format_
        )
        for format_ in QG_FORMATS
    ]

    def _info(self):
        return nlp.DatasetInfo(
            description=_DESCRIPTION,
            features=nlp.Features(
                {
                    "source_text": nlp.Value("string"),
                    "target_text": nlp.Value("string"),
                    "task": nlp.Value("string"),
                }
            ),
            # No default supervised_keys (as we have to pass both question
            # and context as input).
            supervised_keys=None,
            homepage="https://rajpurkar.github.io/SQuAD-explorer/",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        urls_to_download = {
            "train": os.path.join(self._URL, self._TRAINING_FILE),
            "dev": os.path.join(self._URL, self._DEV_FILE),
        }
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            nlp.SplitGenerator(name=nlp.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            nlp.SplitGenerator(name=nlp.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
        ]
    
    def _get_correct_alignement(self, context, answer):
        """ Some original examples in SQuAD have indices wrong by 1 or 2 character. We test and fix this here. """
        gold_text = answer['text']
        start_idx = answer['answer_start']
        end_idx = start_idx + len(gold_text)
        if context[start_idx:end_idx] == gold_text:
            return start_idx, end_idx       # When the gold label position is good
        elif context[start_idx-1:end_idx-1] == gold_text:
            return start_idx-1, end_idx-1   # When the gold label is off by one character
        elif context[start_idx-2:end_idx-2] == gold_text:
            return start_idx-2, end_idx-2   # When the gold label is off by two character
        else:
            raise ValueError()
    
    def process_qa_text(self, context, question, answer):
        ans_gen_input = f"question: {question}  context: {context}"
        ans_gen_target = f"{answer}"
        return {"source_text": ans_gen_input, "target_text": ans_gen_target, "task": "qa"}

    def process_qg_text(self, context, question, answer):
        answer_text = answer['text'].strip()
        
        if self.config.qg_format == "prepend":
            que_gen_input = f"answer: {answer_text}  context: {context}"
        elif self.config.qg_format == "highlight":
            start_pos, end_pos = self._get_correct_alignement(context, answer)
            que_gen_input = f"generate question: {context[:start_pos]} {{hl_token}} {answer_text} {{hl_token}} {context[end_pos:]}"
        else:
            start_pos, end_pos = self._get_correct_alignement(context, answer)
            que_gen_input = f"answer: {answer_text} context: {context[:start_pos]} {{hl_token}} {answer_text} {{hl_token}} {context[end_pos:]}"
        
        que_gen_target = f"{question}"
        return {"source_text": que_gen_input, "target_text": que_gen_target, "task": "qg"}
    
    def process_e2e_qg(self, paragraph):
        source_text = f"generate questions: {paragraph['context'].strip()}"
        questions = [qas['question'].strip() for qas in paragraph['qas']]
        target_text = " {sep_token} ".join(questions)
        target_text = f"{target_text} {{sep_token}}"
        return {"source_text": source_text, "target_text": target_text, "task": "e2e_qg"}

    def process_ans_ext(self, paragraph):
        context = paragraph['context'].strip()
    
        # split into sentences
        sents = nltk.sent_tokenize(context)

        # get positions of the sentences
        positions = []
        for i, sent in enumerate(sents):
            if i == 0:
                start, end = 0, len(sent)
            else:
                start, end = (prev_end + 1), (prev_end + len(sent) + 1)
            prev_end = end
            positions.append({'start': start, 'end': end})
        
        # get answers
        answers = [qa['answers'][0] for qa in paragraph['qas']]

        # get list of answers for each sentence
        sent_answers = []
        for pos, sent in zip(positions, sents):
            target_answers = []
            for ans in answers:
                if ans['answer_start'] in range(pos['start'], pos['end']):
                    target_answers.append(ans['text'].strip())
            sent_answers.append(target_answers)

        # build inputs and targets
        examples = []
        for i, ans in enumerate(sent_answers):
            context = "extract answers:"
            if len(ans) == 0: continue
            ans = list(set(ans))
            for j, sent in enumerate(sents):
                if i == j:
                    sent = "{hl_token} %s {hl_token}" % sent
                context = "%s %s" % (context, sent)
                context = context.strip()
            input_text = context
            target_text = " {sep_token} ".join(ans) + " {sep_token}"

            examples.append({'source_text': input_text, "target_text": target_text, "task": "ans_ext"})
        
        return examples

    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form."""
        logging.info("generating examples from = %s", filepath)
        count = 0
        tasks = ['qa', 'qg', 'ans_ext', 'e2e_qg']
        with open(filepath) as f:
            squad = json.load(f)
            for article in squad["data"]:
                title = article.get("title", "").strip()
                for paragraph in article["paragraphs"]:
                    context = paragraph["context"].strip()
                    
                    if 'ans_ext' in tasks:
                        ans_ext_examples = self.process_ans_ext(paragraph)
                        for example in ans_ext_examples:
                                yield count, example
                                count += 1
                    
                    if 'e2e_qg' in tasks:
                        yield count, self.process_e2e_qg(paragraph)
                        count += 1
                    
                    for qa in paragraph["qas"]:
                        question = qa["question"].strip()
                        id_ = qa["id"]

                        answers = [answer["text"].strip() for answer in qa["answers"]]
                        for task in tasks:
                            if task == 'qa':
                                yield count, self.process_qa_text(context, question, answers[0])
                                count += 1
                            
                            if task == 'qg':
                                yield count, self.process_qg_text(context, question, qa["answers"][0])
                                count += 1