Spaces:
Runtime error
Runtime error
File size: 7,906 Bytes
97ec4dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import dataclasses
import json
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Dict, List, Optional
import numpy as np
import torch
from transformers import (
AutoModelForSeq2SeqLM,
AutoTokenizer,
T5Tokenizer,
BartTokenizer,
HfArgumentParser,
DataCollator,
TrainingArguments,
set_seed,
)
from trainer import Trainer
from data_collator import T2TDataCollator
from utils import freeze_embeds, assert_not_all_frozen
MODEL_TYPE_TO_TOKENIZER = {
"t5": T5Tokenizer,
"bart": BartTokenizer,
}
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
model_type: str = field(metadata={"help": "One of 't5', 'bart'"})
tokenizer_name_or_path: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
)
label_smoothing: Optional[float] = field(
default=0,
metadata={"help": "label smoothing rate, set to > 0 if you want to enable lable smoothing"}
)
freeze_embeds: bool = field(
default=False,
metadata={"help": "Freeze token embeddings and positional embeddings for bart, just token embeddings for t5."}
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
train_file_path: str = field(
metadata={"help": "Path for cached train dataset"},
)
valid_file_path: str = field(
metadata={"help": "Path for cached valid dataset"},
)
data_dir: Optional[str] = field(
default=None,
metadata={"help": "Path for data files"},
)
task: Optional[str] = field(
default=None,
metadata={"help": "Which task 'qa', 'qg', 'e2e_qg', 'ans_ext', 'multi'. 'multi' means 'qa', 'qg', 'ans_ext' tasks"},
)
qg_format: Optional[str] = field(
default='prepend_qg_format',
metadata={"help": "How to format inputs for que generation, 'highlight_qg_format' or 'prepend_qg_format'"},
)
max_source_length: Optional[int] = field(
default=512,
metadata={"help": "Max input length for the source text"},
)
max_target_length: Optional[int] = field(
default=32,
metadata={"help": "Max input length for the target text"},
)
def main(args_file=None):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if (len(sys.argv) == 2 and sys.argv[1].endswith(".json")) or args_file is not None:
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
args_file_path = os.path.abspath(sys.argv[1]) if args_file is None else args_file
model_args, data_args, training_args = parser.parse_json_file(json_file=args_file_path)
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
assert model_args.model_type in list(MODEL_TYPE_TO_TOKENIZER.keys()), "model type should be 't5' or 'bart'"
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
training_args.fp16,
)
logger.info("Training/evaluation parameters %s", training_args)
# Set seed
set_seed(training_args.seed)
# Set project name
os.environ["WANDB_PROJECT"] = "question-generation"
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
tokenizer_cls = MODEL_TYPE_TO_TOKENIZER[model_args.model_type]
tokenizer = tokenizer_cls.from_pretrained(
model_args.tokenizer_name_or_path if model_args.tokenizer_name_or_path else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
)
model = AutoModelForSeq2SeqLM.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
)
model.resize_token_embeddings(len(tokenizer))
if model_args.freeze_embeds:
logger.info("freezing embeddings of the model")
freeze_embeds(model)
assert_not_all_frozen(model)
# Get datasets
logger.info('loading dataset')
train_dataset = torch.load(data_args.train_file_path) if training_args.do_train else None
valid_dataset = torch.load(data_args.valid_file_path) if training_args.do_eval else None
logger.info('finished loading dataset')
# Initialize data_collator
data_collator = T2TDataCollator(
tokenizer=tokenizer,
model_type=model_args.model_type,
mode="training",
using_tpu=training_args.tpu_num_cores is not None
)
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=valid_dataset,
data_collator=data_collator,
prediction_loss_only=True,
label_smoothing=model_args.label_smoothing
)
# disable wandb console logs
logging.getLogger('wandb.run_manager').setLevel(logging.WARNING)
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
)
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir)
# Evaluation
results = {}
if training_args.do_eval and training_args.local_rank in [-1, 0]:
logger.info("*** Evaluate ***")
eval_output = trainer.evaluate()
output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key in sorted(eval_output.keys()):
logger.info(" %s = %s", key, str(eval_output[key]))
writer.write("%s = %s\n" % (key, str(eval_output[key])))
results.update(eval_output)
return results
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
def run_qg(args_dict):
with open("args.json", 'w') as f:
json.dump(args_dict, f)
main(args_file="args.json")
if __name__ == "__main__":
main() |