Spaces:
Runtime error
Runtime error
from typing import Dict, List, Optional | |
import torch | |
def trim_batch( | |
input_ids, pad_token_id, attention_mask=None, | |
): | |
"""Remove columns that are populated exclusively by pad_token_id""" | |
keep_column_mask = input_ids.ne(pad_token_id).any(dim=0) | |
if attention_mask is None: | |
return input_ids[:, keep_column_mask] | |
else: | |
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) | |
# prepares lm_labels from target_ids, returns examples with keys as expected by the forward method | |
# this is necessacry because the trainer directly passes this dict as arguments to the model | |
# so make sure the keys match the parameter names of the forward method | |
class T2TDataCollator(): | |
def __init__(self, tokenizer, model_type="t5", mode='training', using_tpu=False): | |
self.tokenizer = tokenizer | |
self.model_type = model_type | |
self.mode = mode | |
self.using_tpu = using_tpu | |
def __call__(self, batch: List) -> Dict[str, torch.Tensor]: | |
""" | |
Take a list of samples from a Dataset and collate them into a batch. | |
Returns: | |
A dictionary of tensors | |
""" | |
input_ids = torch.stack([example['source_ids'] for example in batch]) | |
target_ids = torch.stack([example['target_ids'] for example in batch]) | |
attention_mask = torch.stack([example['attention_mask'] for example in batch]) | |
pad_token_id = self.tokenizer.pad_token_id | |
# don't trim on tpu, for some reason trimming leads to slower training on TPU | |
if not self.using_tpu: | |
input_ids, attention_mask = trim_batch(input_ids, pad_token_id, attention_mask=attention_mask) | |
target_ids = trim_batch(target_ids, pad_token_id) | |
if self.model_type == "t5": | |
lm_labels = target_ids.clone() | |
decoder_input_ids = self._shift_right_t5(lm_labels) | |
if self.mode == 'training': | |
lm_labels[lm_labels[:, :] == pad_token_id] = -100 | |
else: | |
decoder_input_ids = target_ids[:, :-1].contiguous() | |
lm_labels = target_ids[:, 1:].clone() | |
if self.mode == 'training': | |
lm_labels[target_ids[:, 1:] == pad_token_id] = -100 | |
params = { | |
"input_ids": input_ids, | |
"attention_mask": attention_mask, | |
"labels": lm_labels, | |
"decoder_input_ids": decoder_input_ids | |
} | |
return params | |
def _shift_right_t5(self, input_ids): | |
decoder_start_token_id = self.tokenizer.pad_token_id | |
pad_token_id = self.tokenizer.pad_token_id | |
assert ( | |
decoder_start_token_id is not None | |
), "self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id. See T5 docs for more information" | |
# shift inputs to the right | |
shifted_input_ids = input_ids.new_zeros(input_ids.shape) | |
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() | |
shifted_input_ids[..., 0] = decoder_start_token_id | |
assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined." | |
# replace possible -100 values in labels by `pad_token_id` | |
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) | |
assert torch.all(shifted_input_ids >= 0).item(), "Verify that `labels` has only positive values and -100" | |
return shifted_input_ids |