ford442 commited on
Commit
ce99327
1 Parent(s): 4c1a182

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -10
app.py CHANGED
@@ -25,7 +25,6 @@ import gc
25
  import csv
26
  from datetime import datetime
27
  from openai import OpenAI
28
- #from gradio import themes
29
 
30
  torch.backends.cuda.matmul.allow_tf32 = False
31
  torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
@@ -34,7 +33,7 @@ torch.backends.cudnn.allow_tf32 = False
34
  torch.backends.cudnn.deterministic = False
35
  #torch.backends.cudnn.benchmark = False
36
  torch.backends.cuda.preferred_blas_library="cublas"
37
- torch.backends.cuda.preferred_linalg_library="cusolver"
38
 
39
  torch.set_float32_matmul_precision("highest")
40
 
@@ -67,9 +66,10 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
67
 
68
  request_log = []
69
 
70
- clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path).to(torch.device("cuda:0"))
71
  clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path)
72
 
 
73
  def compute_clip_embedding(text=None, image=None):
74
  """
75
  Compute CLIP embedding for a given text or image.
@@ -218,7 +218,7 @@ vae = load_vae(vae_dir)
218
  unet = load_unet(unet_dir)
219
  scheduler = load_scheduler(scheduler_dir)
220
  patchifier = SymmetricPatchifier(patch_size=1)
221
- text_encoder = T5EncoderModel.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder").to(torch.device("cuda:0"))
222
  tokenizer = T5Tokenizer.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer")
223
 
224
  pipeline = XoraVideoPipeline(
@@ -228,7 +228,7 @@ pipeline = XoraVideoPipeline(
228
  tokenizer=tokenizer,
229
  scheduler=scheduler,
230
  vae=vae,
231
- ).to(torch.device("cuda:0"))
232
 
233
  @spaces.GPU(duration=90) # Dynamic duration
234
  def generate_video_from_text_90(
@@ -319,7 +319,7 @@ def generate_video_from_image_90(
319
  frame_rate=20,
320
  seed=random.randint(0, MAX_SEED),
321
  num_inference_steps=35,
322
- guidance_scale=4.2,
323
  height=768,
324
  width=768,
325
  num_frames=60,
@@ -356,7 +356,7 @@ def generate_video_from_image_90(
356
  "media_items": media_items,
357
  }
358
 
359
- generator = torch.Generator(device="cuda").manual_seed(seed)
360
 
361
  def gradio_progress_callback(self, step, timestep, kwargs):
362
  progress((step + 1) / num_inference_steps)
@@ -394,16 +394,18 @@ def generate_video_from_image_90(
394
  f"An error occurred while generating the video. Please try again. Error: {e}",
395
  duration=5,
396
  )
 
397
  finally:
398
  torch.cuda.empty_cache()
399
  gc.collect()
 
400
  return output_path
401
 
402
  def create_advanced_options():
403
  with gr.Accordion("Step 4: Advanced Options (Optional)", open=False):
404
  seed = gr.Slider(label="4.1 Seed", minimum=0, maximum=1000000, step=1, value=646373)
405
  inference_steps = gr.Slider(label="4.2 Inference Steps", minimum=5, maximum=150, step=5, value=40)
406
- guidance_scale = gr.Slider(label="4.3 Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=4.2)
407
 
408
  height_slider = gr.Slider(
409
  label="4.4 Height",
@@ -440,7 +442,7 @@ def create_advanced_options():
440
  ]
441
 
442
  # Define the Gradio interface with tabs
443
- with gr.Blocks(theme=gr.themes.Glass()) as iface:
444
  with gr.Row(elem_id="title-row"):
445
  gr.Markdown(
446
  """
@@ -697,4 +699,4 @@ with gr.Blocks(theme=gr.themes.Glass()) as iface:
697
  )
698
 
699
  if __name__ == "__main__":
700
- iface.queue(max_size=64, default_concurrency_limit=1, api_open=False).launch(share=True, show_api=False)
 
25
  import csv
26
  from datetime import datetime
27
  from openai import OpenAI
 
28
 
29
  torch.backends.cuda.matmul.allow_tf32 = False
30
  torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
 
33
  torch.backends.cudnn.deterministic = False
34
  #torch.backends.cudnn.benchmark = False
35
  torch.backends.cuda.preferred_blas_library="cublas"
36
+ #torch.backends.cuda.preferred_linalg_library="cusolver"
37
 
38
  torch.set_float32_matmul_precision("highest")
39
 
 
66
 
67
  request_log = []
68
 
69
+ clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path).to(device)
70
  clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path)
71
 
72
+
73
  def compute_clip_embedding(text=None, image=None):
74
  """
75
  Compute CLIP embedding for a given text or image.
 
218
  unet = load_unet(unet_dir)
219
  scheduler = load_scheduler(scheduler_dir)
220
  patchifier = SymmetricPatchifier(patch_size=1)
221
+ text_encoder = T5EncoderModel.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder").to(device)
222
  tokenizer = T5Tokenizer.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer")
223
 
224
  pipeline = XoraVideoPipeline(
 
228
  tokenizer=tokenizer,
229
  scheduler=scheduler,
230
  vae=vae,
231
+ ).to(device)
232
 
233
  @spaces.GPU(duration=90) # Dynamic duration
234
  def generate_video_from_text_90(
 
319
  frame_rate=20,
320
  seed=random.randint(0, MAX_SEED),
321
  num_inference_steps=35,
322
+ guidance_scale=3.2,
323
  height=768,
324
  width=768,
325
  num_frames=60,
 
356
  "media_items": media_items,
357
  }
358
 
359
+ generator = torch.Generator(device="cpu").manual_seed(seed)
360
 
361
  def gradio_progress_callback(self, step, timestep, kwargs):
362
  progress((step + 1) / num_inference_steps)
 
394
  f"An error occurred while generating the video. Please try again. Error: {e}",
395
  duration=5,
396
  )
397
+
398
  finally:
399
  torch.cuda.empty_cache()
400
  gc.collect()
401
+
402
  return output_path
403
 
404
  def create_advanced_options():
405
  with gr.Accordion("Step 4: Advanced Options (Optional)", open=False):
406
  seed = gr.Slider(label="4.1 Seed", minimum=0, maximum=1000000, step=1, value=646373)
407
  inference_steps = gr.Slider(label="4.2 Inference Steps", minimum=5, maximum=150, step=5, value=40)
408
+ guidance_scale = gr.Slider(label="4.3 Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=3.2)
409
 
410
  height_slider = gr.Slider(
411
  label="4.4 Height",
 
442
  ]
443
 
444
  # Define the Gradio interface with tabs
445
+ with gr.Blocks(theme=gr.themes.Soft()) as iface:
446
  with gr.Row(elem_id="title-row"):
447
  gr.Markdown(
448
  """
 
699
  )
700
 
701
  if __name__ == "__main__":
702
+ iface.queue(max_size=64, default_concurrency_limit=1, api_open=False).launch(share=True, show_api=False)