Spaces:
Sleeping
Sleeping
File size: 3,888 Bytes
7b59ebe 9577ea0 7b59ebe 4902da8 7b59ebe 9577ea0 7b59ebe 9577ea0 7b59ebe 9577ea0 7b59ebe 4902da8 7b59ebe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import json
import gradio as gr
from omegaconf import OmegaConf
from huggingface_hub import snapshot_download
from vosk import Model, KaldiRecognizer
def load_vosk(model_id: str):
model_dir = snapshot_download(model_id)
return Model(model_path=model_dir)
OmegaConf.register_new_resolver("load_vosk", load_vosk)
models_config = OmegaConf.to_object(OmegaConf.load("configs/models.yaml"))
def automatic_speech_recognition(model_id: str, dialect_id: str, audio_data: str):
if isinstance(models_config[model_id]["model"], dict):
model = models_config[model_id]["model"][dialect_id]
else:
model = models_config[model_id]["model"]
sample_rate, audio_array = audio_data
if audio_array.ndim == 2:
audio_array = audio_array[:, 0]
audio_bytes = audio_array.tobytes()
rec = KaldiRecognizer(model, sample_rate)
rec.SetWords(True)
results = []
for start in range(0, len(audio_bytes), 4000):
end = min(start + 4000, len(audio_bytes))
data = audio_bytes[start:end]
if rec.AcceptWaveform(data):
raw_result = json.loads(rec.Result())
results.append(raw_result)
final_result = json.loads(rec.FinalResult())
results.append(final_result)
filtered_lines = []
for result in results:
result["text"] = result["text"].replace(" ", "")
if len(result["text"]) > 0:
filtered_lines.append(result["text"])
return ",".join(filtered_lines) + "。"
def when_model_selected(model_id: str):
model_config = models_config[model_id]
if "dialect_mapping" not in model_config["dialect_mapping"]:
return gr.update(visible=False)
dialect_drop_down_choices = [
(k, v) for k, v in model_config["dialect_mapping"].items()
]
return gr.update(
choices=dialect_drop_down_choices,
value=dialect_drop_down_choices[0][1],
visible=True,
)
demo = gr.Blocks(
title="臺灣客語語音辨識系統",
css="@import url(https://tauhu.tw/tauhu-oo.css);",
theme=gr.themes.Default(
font=(
"tauhu-oo",
gr.themes.GoogleFont("Source Sans Pro"),
"ui-sans-serif",
"system-ui",
"sans-serif",
)
),
)
with demo:
default_model_id = list(models_config.keys())[0]
model_drop_down = gr.Dropdown(
models_config.keys(),
value=default_model_id,
label="模型",
)
dialect_drop_down = gr.Dropdown(
choices=[
(k, v)
for k, v in models_config[default_model_id]["dialect_mapping"].items()
],
value=list(models_config[default_model_id]["dialect_mapping"].values())[0],
label="腔調",
)
model_drop_down.input(
when_model_selected,
inputs=[model_drop_down],
outputs=[dialect_drop_down],
)
gr.Markdown(
"""
# 臺灣客語語音辨識系統
### Taiwanese Hakka Automatic-Speech-Recognition System
### 研發
- **[李鴻欣 Hung-Shin Lee](mailto:hungshinlee@gmail.com)([聯和科創](https://www.104.com.tw/company/1a2x6bmu75))**
- **[陳力瑋 Li-Wei Chen](mailto:wayne900619@gmail.com)([聯和科創](https://www.104.com.tw/company/1a2x6bmu75))**
"""
)
gr.Interface(
automatic_speech_recognition,
inputs=[
model_drop_down,
dialect_drop_down,
gr.Audio(
label="上傳或錄音",
type="numpy",
format="wav",
waveform_options=gr.WaveformOptions(
sample_rate=16000,
),
),
],
outputs=[
gr.Text(interactive=False, label="客語漢字"),
],
allow_flagging="auto",
)
demo.launch()
|