fradinho commited on
Commit
3dc1449
·
1 Parent(s): 68c4216

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -1
app.py CHANGED
@@ -84,6 +84,28 @@ def predict_2(image):
84
 
85
  return out, unpatched_prediction
86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
  LABEL_NAMES = ["unlabeled",
88
  "paved-area",
89
  "dirt",
@@ -194,7 +216,8 @@ with my_app:
194
  output_label = gr.Label(label="Predicted Masked Image")
195
  img_output = gr.Image(label="Image Output")
196
  source_image_loader.click(
197
- predict_2,
 
198
  [
199
  img_source
200
  ],
 
84
 
85
  return out, unpatched_prediction
86
 
87
+ from empatches import EMPatches
88
+
89
+ def predict_patches(image):
90
+ #img = Image.open(image)
91
+ image = Image.fromarray(image).resize((size,size))
92
+ image = np.array(image)/255
93
+ emp = EMPatches()
94
+ img_patches, indices = emp.extract_patches(image, patchsize=pach_size, overlap=0.2, stride=int(pach_size/2))
95
+ pred = model.predict(np.array(img_patches))
96
+ # Postprocess the mask
97
+ #print(pred)
98
+ pred = np.argmax(pred, axis=3)
99
+ merged_img = emp.merge_patches(pred, indices, mode='max').astype("int16")
100
+
101
+ #print(merged_img)
102
+ unpatched_prediction = targets_classes_colors[merged_img]
103
+ image_classes = []
104
+ for i in range(targets_classes_colors.shape[0]):
105
+ image_classes.append(np.sum(np.all(unpatched_prediction == targets_classes_colors[i,:], axis=-1))/(size*size*3))
106
+ results = dict(zip(LABEL_NAMES, image_classes))
107
+ return results, unpatched_prediction
108
+
109
  LABEL_NAMES = ["unlabeled",
110
  "paved-area",
111
  "dirt",
 
216
  output_label = gr.Label(label="Predicted Masked Image")
217
  img_output = gr.Image(label="Image Output")
218
  source_image_loader.click(
219
+ #predict_2,
220
+ predict_patches,
221
  [
222
  img_source
223
  ],