import gradio as gr from transformers import load_tool, ReactCodeAgent, HfEngine, Tool from gradio_agentchatbot import ( AgentChatbot, stream_from_transformers_agent, ChatMessage, ) from dotenv import load_dotenv from langchain.agents import load_tools from pathlib import Path current_dir = Path(__file__).parent load_dotenv() # Import tool from Hub image_generation_tool = load_tool("m-ric/text-to-image") search_tool = Tool.from_langchain(load_tools(["serpapi"])[0]) llm_engine = HfEngine("meta-llama/Meta-Llama-3-70B-Instruct") # Initialize the agent with both tools agent = ReactCodeAgent( tools=[image_generation_tool, search_tool], llm_engine=llm_engine ) def interact_with_agent(prompt, messages): messages.append(ChatMessage(role="user", content=prompt)) yield messages for msg in stream_from_transformers_agent(agent, prompt): messages.append(msg) yield messages yield messages with gr.Blocks() as demo: with gr.Tabs(): with gr.Tab("Demo"): gr.Markdown("# Chat with an LLM Agent 🤖 and see its thoughts 💭") chatbot = AgentChatbot( label="Agent", avatar_images=[ None, "https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png", ], ) text_input = gr.Textbox(lines=1, label="Chat Message") text_input.submit(interact_with_agent, [text_input, chatbot], [chatbot]) with gr.Tab("Docs"): gr.Markdown(Path(current_dir / "docs.md").read_text()) if __name__ == "__main__": demo.launch()