Spaces:
Running
Running
File size: 5,307 Bytes
379e788 3311c9f 2dba572 3311c9f 379e788 3311c9f 379e788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import gradio as gr
from _app import demo as app
import os
_docs = {'PDF': {'description': 'A base class for defining methods that all input/output components should have.', 'members': {'__init__': {'value': {'type': 'Any', 'default': 'None', 'description': None}, 'height': {'type': 'int | None', 'default': 'None', 'description': None}, 'label': {'type': 'str | None', 'default': 'None', 'description': None}, 'info': {'type': 'str | None', 'default': 'None', 'description': None}, 'show_label': {'type': 'bool | None', 'default': 'None', 'description': None}, 'container': {'type': 'bool', 'default': 'True', 'description': None}, 'scale': {'type': 'int | None', 'default': 'None', 'description': None}, 'min_width': {'type': 'int | None', 'default': 'None', 'description': None}, 'interactive': {'type': 'bool | None', 'default': 'None', 'description': None}, 'visible': {'type': 'bool', 'default': 'True', 'description': None}, 'elem_id': {'type': 'str | None', 'default': 'None', 'description': None}, 'elem_classes': {'type': 'list[str] | str | None', 'default': 'None', 'description': None}, 'render': {'type': 'bool', 'default': 'True', 'description': None}, 'load_fn': {'type': 'Callable[Ellipsis, Any] | None', 'default': 'None', 'description': None}, 'every': {'type': 'float | None', 'default': 'None', 'description': None}}, 'postprocess': {'value': {'type': 'str | None', 'description': None}}, 'preprocess': {'return': {'type': 'str', 'description': None}, 'value': None}}, 'events': {'change': {'type': None, 'default': None, 'description': ''}, 'upload': {'type': None, 'default': None, 'description': ''}}}, '__meta__': {'additional_interfaces': {}, 'user_fn_refs': {'PDF': []}}}
abs_path = os.path.join(os.path.dirname(__file__), "css.css")
with gr.Blocks(
css=abs_path,
theme=gr.themes.Default(
font_mono=[
gr.themes.GoogleFont("Inconsolata"),
"monospace",
],
),
) as demo:
gr.Markdown(
"""
# `gradio_pdf`
<div style="display: flex; gap: 7px;">
<a href="https://pypi.org/project/gradio_pdf/" target="_blank"><img alt="PyPI - Version" src="https://img.shields.io/pypi/v/gradio_pdf"></a>
</div>
Python library for easily interacting with trained machine learning models
""", elem_classes=["md-custom"], header_links=True)
app.render()
gr.Markdown(
"""
## Installation
```bash
pip install gradio_pdf
```
## Usage
```python
import gradio as gr
from gradio_pdf import PDF
from pdf2image import convert_from_path
from transformers import pipeline
from pathlib import Path
dir_ = Path(__file__).parent
p = pipeline(
"document-question-answering",
model="impira/layoutlm-document-qa",
)
def qa(question: str, doc: str) -> str:
img = convert_from_path(doc)[0]
output = p(img, question)
return sorted(output, key=lambda x: x["score"], reverse=True)[0]['answer']
demo = gr.Interface(
qa,
[gr.Textbox(label="Question"), PDF(label="Document")],
gr.Textbox(),
examples=[["What is the total gross worth?", str(dir_ / "invoice_2.pdf")],
["Whos is being invoiced?", str(dir_ / "sample_invoice.pdf")]]
)
if __name__ == "__main__":
demo.launch()
```
""", elem_classes=["md-custom"], header_links=True)
gr.Markdown("""
## `PDF`
### Initialization
""", elem_classes=["md-custom"], header_links=True)
gr.ParamViewer(value=_docs["PDF"]["members"]["__init__"], linkify=[])
gr.Markdown("### Events")
gr.ParamViewer(value=_docs["PDF"]["events"], linkify=['Event'])
gr.Markdown("""
### User function
The impact on the users predict function varies depending on whether the component is used as an input or output for an event (or both).
- When used as an Input, the component only impacts the input signature of the user function.
- When used as an output, the component only impacts the return signature of the user function.
The code snippet below is accurate in cases where the component is used as both an input and an output.
```python
def predict(
value: str
) -> str | None:
return value
```
""", elem_classes=["md-custom", "PDF-user-fn"], header_links=True)
demo.load(None, js=r"""function() {
const refs = {};
const user_fn_refs = {
PDF: [], };
requestAnimationFrame(() => {
Object.entries(user_fn_refs).forEach(([key, refs]) => {
if (refs.length > 0) {
const el = document.querySelector(`.${key}-user-fn`);
if (!el) return;
refs.forEach(ref => {
el.innerHTML = el.innerHTML.replace(
new RegExp("\\b"+ref+"\\b", "g"),
`<a href="#h-${ref.toLowerCase()}">${ref}</a>`
);
})
}
})
Object.entries(refs).forEach(([key, refs]) => {
if (refs.length > 0) {
const el = document.querySelector(`.${key}`);
if (!el) return;
refs.forEach(ref => {
el.innerHTML = el.innerHTML.replace(
new RegExp("\\b"+ref+"\\b", "g"),
`<a href="#h-${ref.toLowerCase()}">${ref}</a>`
);
})
}
})
})
}
""")
demo.launch()
|