Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 4,886 Bytes
5197529 d52ab93 5197529 d52ab93 5197529 d52ab93 5197529 d52ab93 5197529 d52ab93 5197529 d52ab93 5197529 d52ab93 5197529 d52ab93 5197529 d52ab93 5197529 d52ab93 5197529 d52ab93 5197529 d52ab93 5197529 c681468 5197529 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import gradio as gr
from gradio_webrtc import WebRTC, ReplyOnStopWords, AdditionalOutputs, audio_to_bytes
import numpy as np
import os
import base64
import openai
import re
from groq import Groq
from dotenv import load_dotenv
load_dotenv()
spinner_html = open("spinner.html").read()
rtc_configuration = None
print("rtc_configuration", rtc_configuration)
import logging
# Configure the root logger to WARNING to suppress debug messages from other libraries
logging.basicConfig(level=logging.WARNING)
# Create a console handler
console_handler = logging.FileHandler("gradio_webrtc.log")
console_handler.setLevel(logging.DEBUG)
# Create a formatter
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
console_handler.setFormatter(formatter)
# Configure the logger for your specific library
logger = logging.getLogger("gradio_webrtc")
logger.setLevel(logging.DEBUG)
logger.addHandler(console_handler)
client = openai.OpenAI(
api_key=os.environ.get("SAMBANOVA_API_KEY"),
base_url="https://api.sambanova.ai/v1",
)
groq_client = Groq()
system_prompt = "You are an AI coding assistant. Your task is to write single-file HTML applications based on a user's request. Only return the necessary code. Include all necessary imports and styles. You may also be asked to edit your original response."
user_prompt = "Please write a single-file HTML application to fulfill the following request.\nThe message:{user_message}\nCurrent code you have written:{code}"
def extract_html_content(text):
"""
Extract content including HTML tags.
"""
match = re.search(r'<!DOCTYPE html>.*?</html>', text, re.DOTALL)
return match.group(0) if match else None
def display_in_sandbox(code):
encoded_html = base64.b64encode(code.encode('utf-8')).decode('utf-8')
data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}"
return f"<iframe src=\"{data_uri}\" width=\"100%\" height=\"600px\"></iframe>"
def generate(user_message: tuple[int, np.ndarray],
history: list[dict],
code: str):
yield AdditionalOutputs(history, spinner_html)
sr, audio = user_message
audio = audio.squeeze()
text = groq_client.audio.transcriptions.create(
file=("audio-file.mp3", audio_to_bytes((sr, audio))),
model="whisper-large-v3-turbo",
response_format="verbose_json",
).text
user_msg_formatted = user_prompt.format(user_message=text, code=code)
history.append({"role": "user", "content": user_msg_formatted})
response = client.chat.completions.create(
model='Meta-Llama-3.1-70B-Instruct',
messages=history,
temperature = 0.1,
top_p = 0.1
)
output = response.choices[0].message.content
html_code = extract_html_content(output)
history.append({"role": "assistant", "content": output})
yield AdditionalOutputs(history, html_code)
with gr.Blocks(css=".code-component {max-height: 500px !important}") as demo:
history = gr.State([{"role": "system", "content": system_prompt}])
with gr.Row():
with gr.Column(scale=1):
gr.HTML(
"""
<h1 style='text-align: center'>
Hello Llama! 🦙
</h1>
<p style='text-align: center'>
Create and edit single-file HTML applications with just your voice! After recording, say "Hey Llama" and wait for confirmation, before asking your question.
</p>
<p style='text-align: center'>
Each conversation is limited to 90 seconds. Once the time limit is up you can rejoin the conversation.
</p>
"""
)
webrtc = WebRTC(rtc_configuration=rtc_configuration,
mode="send", modality="audio")
with gr.Column(scale=10):
with gr.Tabs():
with gr.Tab("Sandbox"):
sandbox = gr.HTML(value=open("sandbox.html").read())
with gr.Tab("Code"):
code = gr.Code(language="html", max_lines=50, interactive=False, elem_classes="code-component")
with gr.Tab("Chat"):
cb = gr.Chatbot(type="messages")
webrtc.stream(ReplyOnStopWords(generate,
input_sample_rate=16000,
stop_words=["hello llama", "hello lama", "hello lamma", "hello llamma"]),
inputs=[webrtc, history, code],
outputs=[webrtc], time_limit=90,
concurrency_limit=10)
webrtc.on_additional_outputs(lambda history, code: (history, code, history),
outputs=[history, code, cb])
code.change(display_in_sandbox, code, sandbox, queue=False)
if __name__ == "__main__":
demo.launch()
|