Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import gradio as gr | |
from gradio_webrtc import WebRTC, ReplyOnStopWords, AdditionalOutputs, audio_to_bytes | |
import numpy as np | |
import base64 | |
import re | |
from groq import Groq | |
from dotenv import load_dotenv | |
load_dotenv() | |
spinner_html = open("spinner.html").read() | |
rtc_configuration = None | |
print("rtc_configuration", rtc_configuration) | |
import logging | |
# Configure the root logger to WARNING to suppress debug messages from other libraries | |
logging.basicConfig(level=logging.WARNING) | |
# Create a console handler | |
console_handler = logging.FileHandler("gradio_webrtc.log") | |
console_handler.setLevel(logging.DEBUG) | |
# Create a formatter | |
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s") | |
console_handler.setFormatter(formatter) | |
# Configure the logger for your specific library | |
logger = logging.getLogger("gradio_webrtc") | |
logger.setLevel(logging.DEBUG) | |
logger.addHandler(console_handler) | |
groq_client = Groq() | |
system_prompt = "You are an AI coding assistant. Your task is to write single-file HTML applications based on a user's request. Only return the necessary code. Include all necessary imports and styles. You may also be asked to edit your original response." | |
user_prompt = "Please write a single-file HTML application to fulfill the following request.\nThe message:{user_message}\nCurrent code you have written:{code}" | |
def extract_html_content(text): | |
""" | |
Extract content including HTML tags. | |
""" | |
match = re.search(r'<!DOCTYPE html>.*?</html>', text, re.DOTALL) | |
return match.group(0) if match else None | |
def display_in_sandbox(code): | |
encoded_html = base64.b64encode(code.encode('utf-8')).decode('utf-8') | |
data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}" | |
return f"<iframe src=\"{data_uri}\" width=\"100%\" height=\"600px\"></iframe>" | |
def generate(user_message: tuple[int, np.ndarray], | |
history: list[dict], | |
code: str): | |
yield AdditionalOutputs(history, spinner_html) | |
sr, audio = user_message | |
audio = audio.squeeze() | |
text = groq_client.audio.transcriptions.create( | |
file=("audio-file.mp3", audio_to_bytes((sr, audio))), | |
model="whisper-large-v3-turbo", | |
response_format="verbose_json", | |
).text | |
user_msg_formatted = user_prompt.format(user_message=text, code=code) | |
history.append({"role": "user", "content": user_msg_formatted}) | |
print("generating response") | |
response = groq_client.chat.completions.create( | |
model="llama-3.3-70b-versatile", | |
messages=history, | |
temperature=1, | |
max_tokens=1024, | |
top_p=1, | |
stream=False, | |
) | |
print("finished generating response") | |
output = response.choices[0].message.content | |
html_code = extract_html_content(output) | |
history.append({"role": "assistant", "content": output}) | |
yield AdditionalOutputs(history, html_code) | |
with gr.Blocks(css=".code-component {max-height: 500px !important}") as demo: | |
history = gr.State([{"role": "system", "content": system_prompt}]) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.HTML( | |
""" | |
<h1 style='text-align: center'> | |
Hello Llama! 🦙 | |
</h1> | |
<p style='text-align: center'> | |
Create and edit single-file HTML applications with just your voice! After recording, say "Hey Llama" and wait for confirmation, before asking your question. | |
</p> | |
<p style='text-align: center'> | |
Each conversation is limited to 90 seconds. Once the time limit is up you can rejoin the conversation. | |
</p> | |
""" | |
) | |
webrtc = WebRTC(rtc_configuration=rtc_configuration, | |
mode="send", modality="audio") | |
with gr.Column(scale=10): | |
with gr.Tabs(): | |
with gr.Tab("Sandbox"): | |
sandbox = gr.HTML(value=open("sandbox.html").read()) | |
with gr.Tab("Code"): | |
code = gr.Code(language="html", max_lines=50, interactive=False, elem_classes="code-component") | |
with gr.Tab("Chat"): | |
cb = gr.Chatbot(type="messages") | |
webrtc.stream(ReplyOnStopWords(generate, | |
input_sample_rate=16000, | |
stop_words=["hello llama", "hello lama", "hello lamma", "hello llamma"]), | |
inputs=[webrtc, history, code], | |
outputs=[webrtc], time_limit=90, | |
concurrency_limit=10) | |
webrtc.on_additional_outputs(lambda history, code: (history, code, history), | |
outputs=[history, code, cb]) | |
code.change(display_in_sandbox, code, sandbox, queue=False) | |
if __name__ == "__main__": | |
demo.launch() | |