talk-to-claude / app.py
freddyaboulton's picture
Update app.py
13b0a33 verified
raw
history blame
5.53 kB
import gradio as gr
from gradio_webrtc import WebRTC, ReplyOnPause, AdditionalOutputs
import anthropic
from pyht import Client as PyHtClient, TTSOptions
import dataclasses
import os
import numpy as np
from huggingface_hub import InferenceClient
import io
from pydub import AudioSegment
from dotenv import load_dotenv
load_dotenv()
account_sid = os.environ.get("TWILIO_ACCOUNT_SID")
auth_token = os.environ.get("TWILIO_AUTH_TOKEN")
if account_sid and auth_token:
from twilio.rest import Client
client = Client(account_sid, auth_token)
token = client.tokens.create()
rtc_configuration = {
"iceServers": token.ice_servers,
"iceTransportPolicy": "relay",
}
else:
rtc_configuration = None
@dataclasses.dataclass
class Clients:
claude: anthropic.Anthropic
play_ht: PyHtClient
hf: InferenceClient
tts_options = TTSOptions(voice="s3://voice-cloning-zero-shot/775ae416-49bb-4fb6-bd45-740f205d20a1/jennifersaad/manifest.json",
sample_rate=24000)
def aggregate_chunks(chunks_iterator):
leftover = b'' # Store incomplete bytes between chunks
for chunk in chunks_iterator:
# Combine with any leftover bytes from previous chunk
current_bytes = leftover + chunk
# Calculate complete samples
n_complete_samples = len(current_bytes) // 2 # int16 = 2 bytes
bytes_to_process = n_complete_samples * 2
# Split into complete samples and leftover
to_process = current_bytes[:bytes_to_process]
leftover = current_bytes[bytes_to_process:]
if to_process: # Only yield if we have complete samples
audio_array = np.frombuffer(to_process, dtype=np.int16).reshape(1, -1)
yield audio_array
def audio_to_bytes(audio: tuple[int, np.ndarray]) -> bytes:
audio_buffer = io.BytesIO()
segment = AudioSegment(
audio[1].tobytes(),
frame_rate=audio[0],
sample_width=audio[1].dtype.itemsize,
channels=1,
)
segment.export(audio_buffer, format="mp3")
return audio_buffer.getvalue()
def set_api_key(claude_key, play_ht_username, play_ht_key):
try:
claude_client = anthropic.Anthropic(api_key=claude_key)
play_ht_client = PyHtClient(user_id=play_ht_username, api_key=play_ht_key)
except:
raise gr.Error("Invalid API keys. Please try again.")
gr.Info("Successfully set API keys.", duration=3)
return Clients(claude=claude_client, play_ht=play_ht_client,
hf=InferenceClient()), gr.skip()
def response(audio: tuple[int, np.ndarray], conversation_llm_format: list[dict],
chatbot: list[dict], client_state: Clients):
if not client_state:
raise gr.Error("Please set your API keys first.")
prompt = client_state.hf.automatic_speech_recognition(audio_to_bytes(audio)).text
conversation_llm_format.append({"role": "user", "content": prompt})
response = client_state.claude.messages.create(
model="claude-3-5-haiku-20241022",
max_tokens=512,
messages=conversation_llm_format,
)
response_text = " ".join(block.text for block in response.content if getattr(block, "type", None) == "text")
conversation_llm_format.append({"role": "assistant", "content": response_text})
chatbot.append({"role": "user", "content": prompt})
chatbot.append({"role": "assistant", "content": response_text})
yield AdditionalOutputs(conversation_llm_format, chatbot)
iterator = client_state.play_ht.tts(response_text, options=tts_options, voice_engine="Play3.0")
for chunk in aggregate_chunks(iterator):
audio_array = np.frombuffer(chunk, dtype=np.int16).reshape(1, -1)
yield (24000, audio_array, "mono")
with gr.Blocks() as demo:
with gr.Group():
with gr.Row():
chatbot = gr.Chatbot(label="Conversation", type="messages")
with gr.Row(equal_height=True):
with gr.Column(scale=1):
with gr.Row():
claude_key = gr.Textbox(type="password", value=os.getenv("ANTHROPIC_API_KEY"),
label="Enter your Anthropic API Key")
play_ht_username = gr.Textbox(type="password",
value=os.getenv("PLAY_HT_USER_ID"),
label="Enter your PlayHt Username")
play_ht_key = gr.Textbox(type="password",
value=os.getenv("PLAY_HT_API_KEY"),
label="Enter your PlayHt API Key")
with gr.Row():
set_key_button = gr.Button("Set Keys", variant="primary")
with gr.Column(scale=5):
audio = WebRTC(modality="audio", mode="send-receive",
label="Audio Stream",
rtc_configuration=rtc_configuration)
client_state = gr.State(None)
conversation_llm_format = gr.State([])
set_key_button.click(set_api_key, inputs=[claude_key, play_ht_username, play_ht_key],
outputs=[client_state, set_key_button])
audio.stream(
ReplyOnPause(response),
inputs=[audio, conversation_llm_format, chatbot, client_state],
outputs=[audio]
)
audio.on_additional_outputs(lambda l, g: (l, g), outputs=[conversation_llm_format, chatbot])
if __name__ == "__main__":
demo.launch()