|
import subprocess |
|
subprocess.run( |
|
'pip install flash-attn --no-build-isolation', |
|
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, |
|
shell=True |
|
) |
|
import os |
|
import time |
|
import spaces |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import gradio as gr |
|
|
|
MODEL_LIST = ["internlm/internlm2_5-7b-chat", "internlm/internlm2_5-7b-chat-1m"] |
|
HF_TOKEN = os.environ.get("HF_TOKEN", None) |
|
MODEL_ID = os.environ.get("MODEL_ID", None) |
|
MODEL_NAME = MODEL_ID.split("/")[-1] |
|
|
|
TITLE = "<h1><center>internlm2.5-7b-chat</center></h1>" |
|
|
|
DESCRIPTION = f""" |
|
<h3>MODEL NOW: <a href="https://hf.co/{MODEL_ID}">{MODEL_NAME}</a></h3> |
|
""" |
|
PLACEHOLDER = """ |
|
<center> |
|
<p>InternLM2.5 has open-sourced a 7 billion parameter base model<br> and a chat model tailored for practical scenarios.</p> |
|
</center> |
|
""" |
|
|
|
|
|
CSS = """ |
|
.duplicate-button { |
|
margin: auto !important; |
|
color: white !important; |
|
background: black !important; |
|
border-radius: 100vh !important; |
|
} |
|
h3 { |
|
text-align: center; |
|
} |
|
""" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
MODEL_ID, |
|
torch_dtype=torch.float16, |
|
attn_implementation="flash_attention_2", |
|
trust_remote_code=True).cuda() |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True) |
|
|
|
model = model.eval() |
|
|
|
@spaces.GPU() |
|
def stream_chat( |
|
message: str, |
|
history: list, |
|
temperature: float = 0.8, |
|
max_new_tokens: int = 1024, |
|
top_p: float = 1.0, |
|
top_k: int = 20, |
|
penalty: float = 1.2 |
|
): |
|
print(f'message: {message}') |
|
print(f'history: {history}') |
|
for resp, history in model.stream_chat( |
|
tokenizer, |
|
query = message, |
|
history = history, |
|
max_new_tokens = max_new_tokens, |
|
do_sample = False if temperature == 0 else True, |
|
top_p = top_p, |
|
top_k = top_k, |
|
temperature = temperature, |
|
): |
|
yield resp |
|
|
|
|
|
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER) |
|
|
|
with gr.Blocks(css=CSS, theme="soft") as demo: |
|
gr.HTML(TITLE) |
|
gr.HTML(DESCRIPTION) |
|
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") |
|
gr.ChatInterface( |
|
fn=stream_chat, |
|
chatbot=chatbot, |
|
fill_height=True, |
|
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), |
|
additional_inputs=[ |
|
gr.Slider( |
|
minimum=0, |
|
maximum=1, |
|
step=0.1, |
|
value=0.8, |
|
label="Temperature", |
|
render=False, |
|
), |
|
gr.Slider( |
|
minimum=128, |
|
maximum=8192, |
|
step=1, |
|
value=1024, |
|
label="Max New Tokens", |
|
render=False, |
|
), |
|
gr.Slider( |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.1, |
|
value=1.0, |
|
label="top_p", |
|
render=False, |
|
), |
|
gr.Slider( |
|
minimum=1, |
|
maximum=20, |
|
step=1, |
|
value=20, |
|
label="top_k", |
|
render=False, |
|
), |
|
gr.Slider( |
|
minimum=0.0, |
|
maximum=2.0, |
|
step=0.1, |
|
value=1.2, |
|
label="Repetition penalty", |
|
render=False, |
|
), |
|
], |
|
examples=[ |
|
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."], |
|
["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."], |
|
["Tell me a random fun fact about the Roman Empire."], |
|
["Show me a code snippet of a website's sticky header in CSS and JavaScript."], |
|
], |
|
cache_examples=False, |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|