Spaces:
Running
Running
Delete src/rmvpe.py
Browse files- src/rmvpe.py +0 -409
src/rmvpe.py
DELETED
@@ -1,409 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
import torch.nn.functional as F
|
5 |
-
from librosa.filters import mel
|
6 |
-
|
7 |
-
|
8 |
-
class BiGRU(nn.Module):
|
9 |
-
def __init__(self, input_features, hidden_features, num_layers):
|
10 |
-
super(BiGRU, self).__init__()
|
11 |
-
self.gru = nn.GRU(
|
12 |
-
input_features,
|
13 |
-
hidden_features,
|
14 |
-
num_layers=num_layers,
|
15 |
-
batch_first=True,
|
16 |
-
bidirectional=True,
|
17 |
-
)
|
18 |
-
|
19 |
-
def forward(self, x):
|
20 |
-
return self.gru(x)[0]
|
21 |
-
|
22 |
-
|
23 |
-
class ConvBlockRes(nn.Module):
|
24 |
-
def __init__(self, in_channels, out_channels, momentum=0.01):
|
25 |
-
super(ConvBlockRes, self).__init__()
|
26 |
-
self.conv = nn.Sequential(
|
27 |
-
nn.Conv2d(
|
28 |
-
in_channels=in_channels,
|
29 |
-
out_channels=out_channels,
|
30 |
-
kernel_size=(3, 3),
|
31 |
-
stride=(1, 1),
|
32 |
-
padding=(1, 1),
|
33 |
-
bias=False,
|
34 |
-
),
|
35 |
-
nn.BatchNorm2d(out_channels, momentum=momentum),
|
36 |
-
nn.ReLU(),
|
37 |
-
nn.Conv2d(
|
38 |
-
in_channels=out_channels,
|
39 |
-
out_channels=out_channels,
|
40 |
-
kernel_size=(3, 3),
|
41 |
-
stride=(1, 1),
|
42 |
-
padding=(1, 1),
|
43 |
-
bias=False,
|
44 |
-
),
|
45 |
-
nn.BatchNorm2d(out_channels, momentum=momentum),
|
46 |
-
nn.ReLU(),
|
47 |
-
)
|
48 |
-
if in_channels != out_channels:
|
49 |
-
self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1))
|
50 |
-
self.is_shortcut = True
|
51 |
-
else:
|
52 |
-
self.is_shortcut = False
|
53 |
-
|
54 |
-
def forward(self, x):
|
55 |
-
if self.is_shortcut:
|
56 |
-
return self.conv(x) + self.shortcut(x)
|
57 |
-
else:
|
58 |
-
return self.conv(x) + x
|
59 |
-
|
60 |
-
|
61 |
-
class Encoder(nn.Module):
|
62 |
-
def __init__(
|
63 |
-
self,
|
64 |
-
in_channels,
|
65 |
-
in_size,
|
66 |
-
n_encoders,
|
67 |
-
kernel_size,
|
68 |
-
n_blocks,
|
69 |
-
out_channels=16,
|
70 |
-
momentum=0.01,
|
71 |
-
):
|
72 |
-
super(Encoder, self).__init__()
|
73 |
-
self.n_encoders = n_encoders
|
74 |
-
self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
|
75 |
-
self.layers = nn.ModuleList()
|
76 |
-
self.latent_channels = []
|
77 |
-
for i in range(self.n_encoders):
|
78 |
-
self.layers.append(
|
79 |
-
ResEncoderBlock(
|
80 |
-
in_channels, out_channels, kernel_size, n_blocks, momentum=momentum
|
81 |
-
)
|
82 |
-
)
|
83 |
-
self.latent_channels.append([out_channels, in_size])
|
84 |
-
in_channels = out_channels
|
85 |
-
out_channels *= 2
|
86 |
-
in_size //= 2
|
87 |
-
self.out_size = in_size
|
88 |
-
self.out_channel = out_channels
|
89 |
-
|
90 |
-
def forward(self, x):
|
91 |
-
concat_tensors = []
|
92 |
-
x = self.bn(x)
|
93 |
-
for i in range(self.n_encoders):
|
94 |
-
_, x = self.layers[i](x)
|
95 |
-
concat_tensors.append(_)
|
96 |
-
return x, concat_tensors
|
97 |
-
|
98 |
-
|
99 |
-
class ResEncoderBlock(nn.Module):
|
100 |
-
def __init__(
|
101 |
-
self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01
|
102 |
-
):
|
103 |
-
super(ResEncoderBlock, self).__init__()
|
104 |
-
self.n_blocks = n_blocks
|
105 |
-
self.conv = nn.ModuleList()
|
106 |
-
self.conv.append(ConvBlockRes(in_channels, out_channels, momentum))
|
107 |
-
for i in range(n_blocks - 1):
|
108 |
-
self.conv.append(ConvBlockRes(out_channels, out_channels, momentum))
|
109 |
-
self.kernel_size = kernel_size
|
110 |
-
if self.kernel_size is not None:
|
111 |
-
self.pool = nn.AvgPool2d(kernel_size=kernel_size)
|
112 |
-
|
113 |
-
def forward(self, x):
|
114 |
-
for i in range(self.n_blocks):
|
115 |
-
x = self.conv[i](x)
|
116 |
-
if self.kernel_size is not None:
|
117 |
-
return x, self.pool(x)
|
118 |
-
else:
|
119 |
-
return x
|
120 |
-
|
121 |
-
|
122 |
-
class Intermediate(nn.Module): #
|
123 |
-
def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
|
124 |
-
super(Intermediate, self).__init__()
|
125 |
-
self.n_inters = n_inters
|
126 |
-
self.layers = nn.ModuleList()
|
127 |
-
self.layers.append(
|
128 |
-
ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum)
|
129 |
-
)
|
130 |
-
for i in range(self.n_inters - 1):
|
131 |
-
self.layers.append(
|
132 |
-
ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum)
|
133 |
-
)
|
134 |
-
|
135 |
-
def forward(self, x):
|
136 |
-
for i in range(self.n_inters):
|
137 |
-
x = self.layers[i](x)
|
138 |
-
return x
|
139 |
-
|
140 |
-
|
141 |
-
class ResDecoderBlock(nn.Module):
|
142 |
-
def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
|
143 |
-
super(ResDecoderBlock, self).__init__()
|
144 |
-
out_padding = (0, 1) if stride == (1, 2) else (1, 1)
|
145 |
-
self.n_blocks = n_blocks
|
146 |
-
self.conv1 = nn.Sequential(
|
147 |
-
nn.ConvTranspose2d(
|
148 |
-
in_channels=in_channels,
|
149 |
-
out_channels=out_channels,
|
150 |
-
kernel_size=(3, 3),
|
151 |
-
stride=stride,
|
152 |
-
padding=(1, 1),
|
153 |
-
output_padding=out_padding,
|
154 |
-
bias=False,
|
155 |
-
),
|
156 |
-
nn.BatchNorm2d(out_channels, momentum=momentum),
|
157 |
-
nn.ReLU(),
|
158 |
-
)
|
159 |
-
self.conv2 = nn.ModuleList()
|
160 |
-
self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
|
161 |
-
for i in range(n_blocks - 1):
|
162 |
-
self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))
|
163 |
-
|
164 |
-
def forward(self, x, concat_tensor):
|
165 |
-
x = self.conv1(x)
|
166 |
-
x = torch.cat((x, concat_tensor), dim=1)
|
167 |
-
for i in range(self.n_blocks):
|
168 |
-
x = self.conv2[i](x)
|
169 |
-
return x
|
170 |
-
|
171 |
-
|
172 |
-
class Decoder(nn.Module):
|
173 |
-
def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
|
174 |
-
super(Decoder, self).__init__()
|
175 |
-
self.layers = nn.ModuleList()
|
176 |
-
self.n_decoders = n_decoders
|
177 |
-
for i in range(self.n_decoders):
|
178 |
-
out_channels = in_channels // 2
|
179 |
-
self.layers.append(
|
180 |
-
ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum)
|
181 |
-
)
|
182 |
-
in_channels = out_channels
|
183 |
-
|
184 |
-
def forward(self, x, concat_tensors):
|
185 |
-
for i in range(self.n_decoders):
|
186 |
-
x = self.layers[i](x, concat_tensors[-1 - i])
|
187 |
-
return x
|
188 |
-
|
189 |
-
|
190 |
-
class DeepUnet(nn.Module):
|
191 |
-
def __init__(
|
192 |
-
self,
|
193 |
-
kernel_size,
|
194 |
-
n_blocks,
|
195 |
-
en_de_layers=5,
|
196 |
-
inter_layers=4,
|
197 |
-
in_channels=1,
|
198 |
-
en_out_channels=16,
|
199 |
-
):
|
200 |
-
super(DeepUnet, self).__init__()
|
201 |
-
self.encoder = Encoder(
|
202 |
-
in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels
|
203 |
-
)
|
204 |
-
self.intermediate = Intermediate(
|
205 |
-
self.encoder.out_channel // 2,
|
206 |
-
self.encoder.out_channel,
|
207 |
-
inter_layers,
|
208 |
-
n_blocks,
|
209 |
-
)
|
210 |
-
self.decoder = Decoder(
|
211 |
-
self.encoder.out_channel, en_de_layers, kernel_size, n_blocks
|
212 |
-
)
|
213 |
-
|
214 |
-
def forward(self, x):
|
215 |
-
x, concat_tensors = self.encoder(x)
|
216 |
-
x = self.intermediate(x)
|
217 |
-
x = self.decoder(x, concat_tensors)
|
218 |
-
return x
|
219 |
-
|
220 |
-
|
221 |
-
class E2E(nn.Module):
|
222 |
-
def __init__(
|
223 |
-
self,
|
224 |
-
n_blocks,
|
225 |
-
n_gru,
|
226 |
-
kernel_size,
|
227 |
-
en_de_layers=5,
|
228 |
-
inter_layers=4,
|
229 |
-
in_channels=1,
|
230 |
-
en_out_channels=16,
|
231 |
-
):
|
232 |
-
super(E2E, self).__init__()
|
233 |
-
self.unet = DeepUnet(
|
234 |
-
kernel_size,
|
235 |
-
n_blocks,
|
236 |
-
en_de_layers,
|
237 |
-
inter_layers,
|
238 |
-
in_channels,
|
239 |
-
en_out_channels,
|
240 |
-
)
|
241 |
-
self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
|
242 |
-
if n_gru:
|
243 |
-
self.fc = nn.Sequential(
|
244 |
-
BiGRU(3 * 128, 256, n_gru),
|
245 |
-
nn.Linear(512, 360),
|
246 |
-
nn.Dropout(0.25),
|
247 |
-
nn.Sigmoid(),
|
248 |
-
)
|
249 |
-
else:
|
250 |
-
self.fc = nn.Sequential(
|
251 |
-
nn.Linear(3 * N_MELS, N_CLASS), nn.Dropout(0.25), nn.Sigmoid()
|
252 |
-
)
|
253 |
-
|
254 |
-
def forward(self, mel):
|
255 |
-
mel = mel.transpose(-1, -2).unsqueeze(1)
|
256 |
-
x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
|
257 |
-
x = self.fc(x)
|
258 |
-
return x
|
259 |
-
|
260 |
-
|
261 |
-
class MelSpectrogram(torch.nn.Module):
|
262 |
-
def __init__(
|
263 |
-
self,
|
264 |
-
is_half,
|
265 |
-
n_mel_channels,
|
266 |
-
sampling_rate,
|
267 |
-
win_length,
|
268 |
-
hop_length,
|
269 |
-
n_fft=None,
|
270 |
-
mel_fmin=0,
|
271 |
-
mel_fmax=None,
|
272 |
-
clamp=1e-5,
|
273 |
-
):
|
274 |
-
super().__init__()
|
275 |
-
n_fft = win_length if n_fft is None else n_fft
|
276 |
-
self.hann_window = {}
|
277 |
-
mel_basis = mel(
|
278 |
-
sr=sampling_rate,
|
279 |
-
n_fft=n_fft,
|
280 |
-
n_mels=n_mel_channels,
|
281 |
-
fmin=mel_fmin,
|
282 |
-
fmax=mel_fmax,
|
283 |
-
htk=True,
|
284 |
-
)
|
285 |
-
mel_basis = torch.from_numpy(mel_basis).float()
|
286 |
-
self.register_buffer("mel_basis", mel_basis)
|
287 |
-
self.n_fft = win_length if n_fft is None else n_fft
|
288 |
-
self.hop_length = hop_length
|
289 |
-
self.win_length = win_length
|
290 |
-
self.sampling_rate = sampling_rate
|
291 |
-
self.n_mel_channels = n_mel_channels
|
292 |
-
self.clamp = clamp
|
293 |
-
self.is_half = is_half
|
294 |
-
|
295 |
-
def forward(self, audio, keyshift=0, speed=1, center=True):
|
296 |
-
factor = 2 ** (keyshift / 12)
|
297 |
-
n_fft_new = int(np.round(self.n_fft * factor))
|
298 |
-
win_length_new = int(np.round(self.win_length * factor))
|
299 |
-
hop_length_new = int(np.round(self.hop_length * speed))
|
300 |
-
keyshift_key = str(keyshift) + "_" + str(audio.device)
|
301 |
-
if keyshift_key not in self.hann_window:
|
302 |
-
self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(
|
303 |
-
audio.device
|
304 |
-
)
|
305 |
-
fft = torch.stft(
|
306 |
-
audio,
|
307 |
-
n_fft=n_fft_new,
|
308 |
-
hop_length=hop_length_new,
|
309 |
-
win_length=win_length_new,
|
310 |
-
window=self.hann_window[keyshift_key],
|
311 |
-
center=center,
|
312 |
-
return_complex=True,
|
313 |
-
)
|
314 |
-
magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
|
315 |
-
if keyshift != 0:
|
316 |
-
size = self.n_fft // 2 + 1
|
317 |
-
resize = magnitude.size(1)
|
318 |
-
if resize < size:
|
319 |
-
magnitude = F.pad(magnitude, (0, 0, 0, size - resize))
|
320 |
-
magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
|
321 |
-
mel_output = torch.matmul(self.mel_basis, magnitude)
|
322 |
-
if self.is_half == True:
|
323 |
-
mel_output = mel_output.half()
|
324 |
-
log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp))
|
325 |
-
return log_mel_spec
|
326 |
-
|
327 |
-
|
328 |
-
class RMVPE:
|
329 |
-
def __init__(self, model_path, is_half, device=None):
|
330 |
-
self.resample_kernel = {}
|
331 |
-
model = E2E(4, 1, (2, 2))
|
332 |
-
ckpt = torch.load(model_path, map_location="cpu")
|
333 |
-
model.load_state_dict(ckpt)
|
334 |
-
model.eval()
|
335 |
-
if is_half == True:
|
336 |
-
model = model.half()
|
337 |
-
self.model = model
|
338 |
-
self.resample_kernel = {}
|
339 |
-
self.is_half = is_half
|
340 |
-
if device is None:
|
341 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
342 |
-
self.device = device
|
343 |
-
self.mel_extractor = MelSpectrogram(
|
344 |
-
is_half, 128, 16000, 1024, 160, None, 30, 8000
|
345 |
-
).to(device)
|
346 |
-
self.model = self.model.to(device)
|
347 |
-
cents_mapping = 20 * np.arange(360) + 1997.3794084376191
|
348 |
-
self.cents_mapping = np.pad(cents_mapping, (4, 4)) # 368
|
349 |
-
|
350 |
-
def mel2hidden(self, mel):
|
351 |
-
with torch.no_grad():
|
352 |
-
n_frames = mel.shape[-1]
|
353 |
-
mel = F.pad(
|
354 |
-
mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode="reflect"
|
355 |
-
)
|
356 |
-
hidden = self.model(mel)
|
357 |
-
return hidden[:, :n_frames]
|
358 |
-
|
359 |
-
def decode(self, hidden, thred=0.03):
|
360 |
-
cents_pred = self.to_local_average_cents(hidden, thred=thred)
|
361 |
-
f0 = 10 * (2 ** (cents_pred / 1200))
|
362 |
-
f0[f0 == 10] = 0
|
363 |
-
# f0 = np.array([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred])
|
364 |
-
return f0
|
365 |
-
|
366 |
-
def infer_from_audio(self, audio, thred=0.03):
|
367 |
-
audio = torch.from_numpy(audio).float().to(self.device).unsqueeze(0)
|
368 |
-
# torch.cuda.synchronize()
|
369 |
-
# t0=ttime()
|
370 |
-
mel = self.mel_extractor(audio, center=True)
|
371 |
-
# torch.cuda.synchronize()
|
372 |
-
# t1=ttime()
|
373 |
-
hidden = self.mel2hidden(mel)
|
374 |
-
# torch.cuda.synchronize()
|
375 |
-
# t2=ttime()
|
376 |
-
hidden = hidden.squeeze(0).cpu().numpy()
|
377 |
-
if self.is_half == True:
|
378 |
-
hidden = hidden.astype("float32")
|
379 |
-
f0 = self.decode(hidden, thred=thred)
|
380 |
-
# torch.cuda.synchronize()
|
381 |
-
# t3=ttime()
|
382 |
-
# print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0))
|
383 |
-
return f0
|
384 |
-
|
385 |
-
def to_local_average_cents(self, salience, thred=0.05):
|
386 |
-
# t0 = ttime()
|
387 |
-
center = np.argmax(salience, axis=1) # 帧长#index
|
388 |
-
salience = np.pad(salience, ((0, 0), (4, 4))) # 帧长,368
|
389 |
-
# t1 = ttime()
|
390 |
-
center += 4
|
391 |
-
todo_salience = []
|
392 |
-
todo_cents_mapping = []
|
393 |
-
starts = center - 4
|
394 |
-
ends = center + 5
|
395 |
-
for idx in range(salience.shape[0]):
|
396 |
-
todo_salience.append(salience[:, starts[idx] : ends[idx]][idx])
|
397 |
-
todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]])
|
398 |
-
# t2 = ttime()
|
399 |
-
todo_salience = np.array(todo_salience) # 帧长,9
|
400 |
-
todo_cents_mapping = np.array(todo_cents_mapping) # 帧长,9
|
401 |
-
product_sum = np.sum(todo_salience * todo_cents_mapping, 1)
|
402 |
-
weight_sum = np.sum(todo_salience, 1) # 帧长
|
403 |
-
devided = product_sum / weight_sum # 帧长
|
404 |
-
# t3 = ttime()
|
405 |
-
maxx = np.max(salience, axis=1) # 帧长
|
406 |
-
devided[maxx <= thred] = 0
|
407 |
-
# t4 = ttime()
|
408 |
-
# print("decode:%s\t%s\t%s\t%s" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
409 |
-
return devided
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|