freyza commited on
Commit
71ebbf9
·
verified ·
1 Parent(s): d5230b8

Delete src/rmvpe.py

Browse files
Files changed (1) hide show
  1. src/rmvpe.py +0 -409
src/rmvpe.py DELETED
@@ -1,409 +0,0 @@
1
- import numpy as np
2
- import torch
3
- import torch.nn as nn
4
- import torch.nn.functional as F
5
- from librosa.filters import mel
6
-
7
-
8
- class BiGRU(nn.Module):
9
- def __init__(self, input_features, hidden_features, num_layers):
10
- super(BiGRU, self).__init__()
11
- self.gru = nn.GRU(
12
- input_features,
13
- hidden_features,
14
- num_layers=num_layers,
15
- batch_first=True,
16
- bidirectional=True,
17
- )
18
-
19
- def forward(self, x):
20
- return self.gru(x)[0]
21
-
22
-
23
- class ConvBlockRes(nn.Module):
24
- def __init__(self, in_channels, out_channels, momentum=0.01):
25
- super(ConvBlockRes, self).__init__()
26
- self.conv = nn.Sequential(
27
- nn.Conv2d(
28
- in_channels=in_channels,
29
- out_channels=out_channels,
30
- kernel_size=(3, 3),
31
- stride=(1, 1),
32
- padding=(1, 1),
33
- bias=False,
34
- ),
35
- nn.BatchNorm2d(out_channels, momentum=momentum),
36
- nn.ReLU(),
37
- nn.Conv2d(
38
- in_channels=out_channels,
39
- out_channels=out_channels,
40
- kernel_size=(3, 3),
41
- stride=(1, 1),
42
- padding=(1, 1),
43
- bias=False,
44
- ),
45
- nn.BatchNorm2d(out_channels, momentum=momentum),
46
- nn.ReLU(),
47
- )
48
- if in_channels != out_channels:
49
- self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1))
50
- self.is_shortcut = True
51
- else:
52
- self.is_shortcut = False
53
-
54
- def forward(self, x):
55
- if self.is_shortcut:
56
- return self.conv(x) + self.shortcut(x)
57
- else:
58
- return self.conv(x) + x
59
-
60
-
61
- class Encoder(nn.Module):
62
- def __init__(
63
- self,
64
- in_channels,
65
- in_size,
66
- n_encoders,
67
- kernel_size,
68
- n_blocks,
69
- out_channels=16,
70
- momentum=0.01,
71
- ):
72
- super(Encoder, self).__init__()
73
- self.n_encoders = n_encoders
74
- self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
75
- self.layers = nn.ModuleList()
76
- self.latent_channels = []
77
- for i in range(self.n_encoders):
78
- self.layers.append(
79
- ResEncoderBlock(
80
- in_channels, out_channels, kernel_size, n_blocks, momentum=momentum
81
- )
82
- )
83
- self.latent_channels.append([out_channels, in_size])
84
- in_channels = out_channels
85
- out_channels *= 2
86
- in_size //= 2
87
- self.out_size = in_size
88
- self.out_channel = out_channels
89
-
90
- def forward(self, x):
91
- concat_tensors = []
92
- x = self.bn(x)
93
- for i in range(self.n_encoders):
94
- _, x = self.layers[i](x)
95
- concat_tensors.append(_)
96
- return x, concat_tensors
97
-
98
-
99
- class ResEncoderBlock(nn.Module):
100
- def __init__(
101
- self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01
102
- ):
103
- super(ResEncoderBlock, self).__init__()
104
- self.n_blocks = n_blocks
105
- self.conv = nn.ModuleList()
106
- self.conv.append(ConvBlockRes(in_channels, out_channels, momentum))
107
- for i in range(n_blocks - 1):
108
- self.conv.append(ConvBlockRes(out_channels, out_channels, momentum))
109
- self.kernel_size = kernel_size
110
- if self.kernel_size is not None:
111
- self.pool = nn.AvgPool2d(kernel_size=kernel_size)
112
-
113
- def forward(self, x):
114
- for i in range(self.n_blocks):
115
- x = self.conv[i](x)
116
- if self.kernel_size is not None:
117
- return x, self.pool(x)
118
- else:
119
- return x
120
-
121
-
122
- class Intermediate(nn.Module): #
123
- def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
124
- super(Intermediate, self).__init__()
125
- self.n_inters = n_inters
126
- self.layers = nn.ModuleList()
127
- self.layers.append(
128
- ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum)
129
- )
130
- for i in range(self.n_inters - 1):
131
- self.layers.append(
132
- ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum)
133
- )
134
-
135
- def forward(self, x):
136
- for i in range(self.n_inters):
137
- x = self.layers[i](x)
138
- return x
139
-
140
-
141
- class ResDecoderBlock(nn.Module):
142
- def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
143
- super(ResDecoderBlock, self).__init__()
144
- out_padding = (0, 1) if stride == (1, 2) else (1, 1)
145
- self.n_blocks = n_blocks
146
- self.conv1 = nn.Sequential(
147
- nn.ConvTranspose2d(
148
- in_channels=in_channels,
149
- out_channels=out_channels,
150
- kernel_size=(3, 3),
151
- stride=stride,
152
- padding=(1, 1),
153
- output_padding=out_padding,
154
- bias=False,
155
- ),
156
- nn.BatchNorm2d(out_channels, momentum=momentum),
157
- nn.ReLU(),
158
- )
159
- self.conv2 = nn.ModuleList()
160
- self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
161
- for i in range(n_blocks - 1):
162
- self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))
163
-
164
- def forward(self, x, concat_tensor):
165
- x = self.conv1(x)
166
- x = torch.cat((x, concat_tensor), dim=1)
167
- for i in range(self.n_blocks):
168
- x = self.conv2[i](x)
169
- return x
170
-
171
-
172
- class Decoder(nn.Module):
173
- def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
174
- super(Decoder, self).__init__()
175
- self.layers = nn.ModuleList()
176
- self.n_decoders = n_decoders
177
- for i in range(self.n_decoders):
178
- out_channels = in_channels // 2
179
- self.layers.append(
180
- ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum)
181
- )
182
- in_channels = out_channels
183
-
184
- def forward(self, x, concat_tensors):
185
- for i in range(self.n_decoders):
186
- x = self.layers[i](x, concat_tensors[-1 - i])
187
- return x
188
-
189
-
190
- class DeepUnet(nn.Module):
191
- def __init__(
192
- self,
193
- kernel_size,
194
- n_blocks,
195
- en_de_layers=5,
196
- inter_layers=4,
197
- in_channels=1,
198
- en_out_channels=16,
199
- ):
200
- super(DeepUnet, self).__init__()
201
- self.encoder = Encoder(
202
- in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels
203
- )
204
- self.intermediate = Intermediate(
205
- self.encoder.out_channel // 2,
206
- self.encoder.out_channel,
207
- inter_layers,
208
- n_blocks,
209
- )
210
- self.decoder = Decoder(
211
- self.encoder.out_channel, en_de_layers, kernel_size, n_blocks
212
- )
213
-
214
- def forward(self, x):
215
- x, concat_tensors = self.encoder(x)
216
- x = self.intermediate(x)
217
- x = self.decoder(x, concat_tensors)
218
- return x
219
-
220
-
221
- class E2E(nn.Module):
222
- def __init__(
223
- self,
224
- n_blocks,
225
- n_gru,
226
- kernel_size,
227
- en_de_layers=5,
228
- inter_layers=4,
229
- in_channels=1,
230
- en_out_channels=16,
231
- ):
232
- super(E2E, self).__init__()
233
- self.unet = DeepUnet(
234
- kernel_size,
235
- n_blocks,
236
- en_de_layers,
237
- inter_layers,
238
- in_channels,
239
- en_out_channels,
240
- )
241
- self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
242
- if n_gru:
243
- self.fc = nn.Sequential(
244
- BiGRU(3 * 128, 256, n_gru),
245
- nn.Linear(512, 360),
246
- nn.Dropout(0.25),
247
- nn.Sigmoid(),
248
- )
249
- else:
250
- self.fc = nn.Sequential(
251
- nn.Linear(3 * N_MELS, N_CLASS), nn.Dropout(0.25), nn.Sigmoid()
252
- )
253
-
254
- def forward(self, mel):
255
- mel = mel.transpose(-1, -2).unsqueeze(1)
256
- x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
257
- x = self.fc(x)
258
- return x
259
-
260
-
261
- class MelSpectrogram(torch.nn.Module):
262
- def __init__(
263
- self,
264
- is_half,
265
- n_mel_channels,
266
- sampling_rate,
267
- win_length,
268
- hop_length,
269
- n_fft=None,
270
- mel_fmin=0,
271
- mel_fmax=None,
272
- clamp=1e-5,
273
- ):
274
- super().__init__()
275
- n_fft = win_length if n_fft is None else n_fft
276
- self.hann_window = {}
277
- mel_basis = mel(
278
- sr=sampling_rate,
279
- n_fft=n_fft,
280
- n_mels=n_mel_channels,
281
- fmin=mel_fmin,
282
- fmax=mel_fmax,
283
- htk=True,
284
- )
285
- mel_basis = torch.from_numpy(mel_basis).float()
286
- self.register_buffer("mel_basis", mel_basis)
287
- self.n_fft = win_length if n_fft is None else n_fft
288
- self.hop_length = hop_length
289
- self.win_length = win_length
290
- self.sampling_rate = sampling_rate
291
- self.n_mel_channels = n_mel_channels
292
- self.clamp = clamp
293
- self.is_half = is_half
294
-
295
- def forward(self, audio, keyshift=0, speed=1, center=True):
296
- factor = 2 ** (keyshift / 12)
297
- n_fft_new = int(np.round(self.n_fft * factor))
298
- win_length_new = int(np.round(self.win_length * factor))
299
- hop_length_new = int(np.round(self.hop_length * speed))
300
- keyshift_key = str(keyshift) + "_" + str(audio.device)
301
- if keyshift_key not in self.hann_window:
302
- self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(
303
- audio.device
304
- )
305
- fft = torch.stft(
306
- audio,
307
- n_fft=n_fft_new,
308
- hop_length=hop_length_new,
309
- win_length=win_length_new,
310
- window=self.hann_window[keyshift_key],
311
- center=center,
312
- return_complex=True,
313
- )
314
- magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
315
- if keyshift != 0:
316
- size = self.n_fft // 2 + 1
317
- resize = magnitude.size(1)
318
- if resize < size:
319
- magnitude = F.pad(magnitude, (0, 0, 0, size - resize))
320
- magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
321
- mel_output = torch.matmul(self.mel_basis, magnitude)
322
- if self.is_half == True:
323
- mel_output = mel_output.half()
324
- log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp))
325
- return log_mel_spec
326
-
327
-
328
- class RMVPE:
329
- def __init__(self, model_path, is_half, device=None):
330
- self.resample_kernel = {}
331
- model = E2E(4, 1, (2, 2))
332
- ckpt = torch.load(model_path, map_location="cpu")
333
- model.load_state_dict(ckpt)
334
- model.eval()
335
- if is_half == True:
336
- model = model.half()
337
- self.model = model
338
- self.resample_kernel = {}
339
- self.is_half = is_half
340
- if device is None:
341
- device = "cuda" if torch.cuda.is_available() else "cpu"
342
- self.device = device
343
- self.mel_extractor = MelSpectrogram(
344
- is_half, 128, 16000, 1024, 160, None, 30, 8000
345
- ).to(device)
346
- self.model = self.model.to(device)
347
- cents_mapping = 20 * np.arange(360) + 1997.3794084376191
348
- self.cents_mapping = np.pad(cents_mapping, (4, 4)) # 368
349
-
350
- def mel2hidden(self, mel):
351
- with torch.no_grad():
352
- n_frames = mel.shape[-1]
353
- mel = F.pad(
354
- mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode="reflect"
355
- )
356
- hidden = self.model(mel)
357
- return hidden[:, :n_frames]
358
-
359
- def decode(self, hidden, thred=0.03):
360
- cents_pred = self.to_local_average_cents(hidden, thred=thred)
361
- f0 = 10 * (2 ** (cents_pred / 1200))
362
- f0[f0 == 10] = 0
363
- # f0 = np.array([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred])
364
- return f0
365
-
366
- def infer_from_audio(self, audio, thred=0.03):
367
- audio = torch.from_numpy(audio).float().to(self.device).unsqueeze(0)
368
- # torch.cuda.synchronize()
369
- # t0=ttime()
370
- mel = self.mel_extractor(audio, center=True)
371
- # torch.cuda.synchronize()
372
- # t1=ttime()
373
- hidden = self.mel2hidden(mel)
374
- # torch.cuda.synchronize()
375
- # t2=ttime()
376
- hidden = hidden.squeeze(0).cpu().numpy()
377
- if self.is_half == True:
378
- hidden = hidden.astype("float32")
379
- f0 = self.decode(hidden, thred=thred)
380
- # torch.cuda.synchronize()
381
- # t3=ttime()
382
- # print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0))
383
- return f0
384
-
385
- def to_local_average_cents(self, salience, thred=0.05):
386
- # t0 = ttime()
387
- center = np.argmax(salience, axis=1) # 帧长#index
388
- salience = np.pad(salience, ((0, 0), (4, 4))) # 帧长,368
389
- # t1 = ttime()
390
- center += 4
391
- todo_salience = []
392
- todo_cents_mapping = []
393
- starts = center - 4
394
- ends = center + 5
395
- for idx in range(salience.shape[0]):
396
- todo_salience.append(salience[:, starts[idx] : ends[idx]][idx])
397
- todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]])
398
- # t2 = ttime()
399
- todo_salience = np.array(todo_salience) # 帧长,9
400
- todo_cents_mapping = np.array(todo_cents_mapping) # 帧长,9
401
- product_sum = np.sum(todo_salience * todo_cents_mapping, 1)
402
- weight_sum = np.sum(todo_salience, 1) # 帧长
403
- devided = product_sum / weight_sum # 帧长
404
- # t3 = ttime()
405
- maxx = np.max(salience, axis=1) # 帧长
406
- devided[maxx <= thred] = 0
407
- # t4 = ttime()
408
- # print("decode:%s\t%s\t%s\t%s" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
409
- return devided