File size: 2,820 Bytes
bbe788d
 
 
940f5b5
bbe788d
 
0697975
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbe788d
c9c2156
bbe788d
 
 
 
 
 
 
643a822
 
 
 
 
 
 
 
d5bb172
643a822
b5290a2
 
 
c9c2156
bbe788d
b5290a2
c9c2156
b5290a2
9c795d0
 
80eb9a3
b5290a2
0f74558
80eb9a3
bbe788d
b5290a2
643a822
bbe788d
80eb9a3
 
bbe788d
 
 
d669f57
bbe788d
efca6f0
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import streamlit as st
import pandas as pd
import numpy as np
import openpyxl
from geopy.distance import geodesic

# Set wide mode
st.set_page_config(layout="wide")

# Set dark theme
st.markdown(
    """
    <style>
        body {
            color: white;
            background-color: #1e1e1e;
        }
        .st-df-header, .st-df-body, .st-df-caption {
            color: #f8f9fa;  /* Bootstrap table header text color */
        }
        .st-eb {
            background-color: #343a40;  /* Streamlit exception box background color */
        }
    </style>
    """,
    unsafe_allow_html=True
)

# Create a DataFrame with sample data
data = pd.read_excel('ven_ter_fim_PEDÓ.xlsx')

# Function to calculate distance in meters between two coordinates
def calculate_distance(lat1, lon1, lat2, lon2):
    coords_1 = (lat1, lon1)
    coords_2 = (lat2, lon2)
    return geodesic(coords_1, coords_2).meters

# Find the maximum distance between coordinates
max_distance = 0
for index, row in data.iterrows():
    distance = calculate_distance(row['latitude'], row['longitude'], data['latitude'].mean(), data['longitude'].mean())
    if distance > max_distance:
        max_distance = distance

# Calculate a zoom level based on the maximum distance
zoom_level = round(15 - np.log10(max_distance))

# Create a sidebar for controls
with st.sidebar:
    # Display a title
    st.title('avalia.se')

    # Dropdown to select specific coordinates
    selected_coords = st.selectbox('Selecione Coordenadas', ['Random', 'Custom'])
    if selected_coords == 'Custom':
        custom_lat = st.number_input('Enter Latitude', value=-29.45086)
        custom_lon = st.number_input('Enter Longitude', value=-51.9847)
        radius_visible = True  # Show radius slider for custom coordinates
    else:
        custom_lat, custom_lon = data['latitude'].mean(), data['longitude'].mean()
        radius_visible = False  # Hide radius slider for random coordinates

    # Slider for setting the zoom level
    zoom_level = st.slider('Nível de zoom', min_value=1, max_value=15, value=zoom_level)

    # Slider to set the radius in meters (conditionally visible)
    radius_in_meters = st.slider('Selecione raio (em metros)', min_value=100, max_value=5000, value=1000, visible=radius_visible)

# Filter data based on the radius
if selected_coords == 'Custom':
    filtered_data = data[data.apply(lambda x: calculate_distance(x['latitude'], x['longitude'], custom_lat, custom_lon), axis=1) <= radius_in_meters]
else:
    filtered_data = data

# Add a custom CSS class to the map container
st.markdown(f"""<style>
.map {{
  width: 100%;
  height: 100vh;
}}
</style>""", unsafe_allow_html=True)

# Wrap the map in a container with the custom CSS class
with st.container():
    st.map(filtered_data, zoom=zoom_level, use_container_width=True)