Spaces:
Sleeping
Sleeping
File size: 1,628 Bytes
bbe788d b5290a2 bbe788d b5290a2 bbe788d b5290a2 bbe788d b5290a2 bbe788d e817bec bbe788d e817bec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import streamlit as st
import pandas as pd
import numpy as np
from geopy.distance import geodesic
# Create a DataFrame with sample data
data = pd.DataFrame({
'lat': np.random.uniform(-90, 90, 1000),
'lon': np.random.uniform(-180, 180, 1000),
'value': np.random.rand(1000) * 100
})
# Function to calculate distance in meters between two coordinates
def calculate_distance(lat1, lon1, lat2, lon2):
coords_1 = (lat1, lon1)
coords_2 = (lat2, lon2)
return geodesic(coords_1, coords_2).meters
# Create a sidebar for controls
with st.sidebar:
# Display a title
st.title('Geospatial Dashboard')
# Dropdown to select specific coordinates
selected_coords = st.selectbox('Select Coordinates', ['Random', 'Custom'])
if selected_coords == 'Custom':
custom_lat = st.number_input('Enter Latitude', value=0.0)
custom_lon = st.number_input('Enter Longitude', value=0.0)
else:
custom_lat, custom_lon = 0.0, 0.0
# Slider for setting the zoom level
zoom_level = st.slider('Zoom Level', min_value=1, max_value=15, value=5)
# Slider to set the radius in meters
radius_in_meters = st.slider('Select Radius (in meters)', min_value=100, max_value=5000, value=1000)
# Filter data based on the radius
if selected_coords == 'Custom':
filtered_data = data[data.apply(lambda x: calculate_distance(x['lat'], x['lon'], custom_lat, custom_lon), axis=1) <= radius_in_meters]
st.map(filtered_data, zoom=zoom_level, use_container_width=True, style={'height': '100vh'})
else:
st.map(data, zoom=zoom_level, use_container_width=True, style={'height': '100vh'}) |