GEO_DASH_TABS / app.py
fschwartzer's picture
Update app.py
72d1967
raw
history blame
11 kB
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.neighbors import KNeighborsRegressor
from geopy.distance import geodesic
import googlemaps
from geopy.exc import GeocoderTimedOut
# Function to calculate distance in meters between two coordinates
def calculate_distance(lat1, lon1, lat2, lon2):
coords_1 = (lat1, lon1)
coords_2 = (lat2, lon2)
return geodesic(coords_1, coords_2).meters
# Function to apply KNN and return V_oferta values
def knn_predict(df, target_column, features_columns, k=5):
# Separate features and target variable
X = df[features_columns]
y = df[target_column]
# Create KNN regressor
knn = KNeighborsRegressor(n_neighbors=k)
# Fit the model
knn.fit(X, y)
# Use the model to predict V_oferta for the filtered_data
predictions = knn.predict(df[features_columns])
return predictions
# Set wide mode
st.set_page_config(layout="wide")
# Set dark theme
st.markdown(
"""
<style>
@font-face {font-family: 'Quicksand';
src: url('font/Quicksand-VariableFont_wght.ttf') format('truetype');
}
body {
color: white;
background-color: #1e1e1e;
font-family: 'Quicksand', sans-serif;
}
.st-df-header, .st-df-body, .st-df-caption {
color: #f8f9fa; /* Bootstrap table header text color */
}
.st-eb {
background-color: #343a40; /* Streamlit exception box background color */
}
</style>
""",
unsafe_allow_html=True
)
# Create a DataFrame with sample data
data = pd.read_excel('ven_fim_PEDÓ_nov_23.xlsx')
# Initialize variables to avoid NameError
selected_coords = 'Direcionada'
radius_visible = True
custom_address_initial = 'Centro, Lajeado - RS, Brazil' # Initial custom address
custom_lat = data['latitude'].median()
custom_lon = data['longitude'].median()
radius_in_meters = 1500
filtered_data = data # Initialize with the entire dataset
# Find the maximum distance between coordinates
max_distance = 0
for index, row in data.iterrows():
distance = calculate_distance(row['latitude'], row['longitude'], data['latitude'].mean(), data['longitude'].mean())
if distance > max_distance:
max_distance = distance
# Calculate a zoom level based on the maximum distance
zoom_level = round(17 - np.log10(max_distance))
# Set font to 'Quicksand' for title_html
title_html = """
<style>
@font-face {font-family: 'Quicksand';
src: url('font/Quicksand-VariableFont_wght.ttf') format('truetype');
}
body {{
font-family: 'Quicksand', sans-serif;
}}
</style>
<span style='color: gray; font-size: 50px;'>aval</span>
<span style='color: white; font-size: 50px;'>ia</span>
<span style='color: gray; font-size: 50px;'>.NEXUS</span>
"""
# Set font to 'Quicksand' for factor_html
factor_html = """
<style>
@font-face {font-family: 'Quicksand';
src: url('font/Quicksand-VariableFont_wght.ttf') format('truetype');
}
body {{
font-family: 'Quicksand', sans-serif;
}}
</style>
<a href='https://huggingface.co/spaces/DavidSB/avaliaFACTOR' target='_blank' style='text-decoration: none; color: inherit;'>
<span style='color: gray; font-size: 20px;'>aval</span>
<span style='color: white; font-size: 20px;'>ia</span>
<span style='color: gray; font-size: 20px;'>.FACTOR</span>
"""
# Set font to 'Quicksand' for evo_html
evo_html = """
<style>
@font-face {font-family: 'Quicksand';
src: url('font/Quicksand-VariableFont_wght.ttf') format('truetype');
}
body {{
font-family: 'Quicksand', sans-serif;
}}
</style>
<a href='https://huggingface.co/spaces/DavidSB/avalia.EVO' target='_blank' style='text-decoration: none; color: inherit;'>
<span style='color: gray; font-size: 20px;'>aval</span>
<span style='color: white; font-size: 20px;'>ia</span>
<span style='color: gray; font-size: 20px;'>.EVO</span>
"""
# Create a sidebar for controls
with st.sidebar:
#st.title('avalia.se')
st.sidebar.markdown(title_html, unsafe_allow_html=True)
# Add a dropdown for filtering "Tipo"
selected_tipo = st.selectbox('Filtrar por Tipo', data['Tipo'].unique())
data_tipo = data[data['Tipo'] == selected_tipo]
selected_coords = st.selectbox('Selecione o tipo de pesquisa', ['Ampla', 'Direcionada'])
if selected_coords == 'Direcionada':
custom_address = st.text_input('Informe o endereço', custom_address_initial)
radius_visible = True # Show radius slider for custom coordinates
# No need to initialize max_distance_all here
else:
custom_address = "Lajeado, Rio Grande do Sul, Brazil" # Default address
radius_visible = False # Hide radius slider for random coordinates
max_distance_all = 0 # Initialize max_distance_all here
max_distance_all = 0 # Initialize max_distance_all here
# Geocode the custom address using the Google Maps API
gmaps = googlemaps.Client(key='AIzaSyDoJ6C7NE2CHqFcaHTnhreOfgJeTk4uSH0') # Replace with your API key
try:
location = gmaps.geocode(custom_address)[0]['geometry']['location']
custom_lat, custom_lon = location['lat'], location['lng']
except (IndexError, GeocoderTimedOut):
st.error("Erro: Não foi possível geocodificar o endereço fornecido. Por favor, verifique e tente novamente.")
# Slider for setting the zoom level
if selected_coords == 'Direcionada':
zoom_level = st.slider('Nível de zoom', min_value=1, max_value=15, value=zoom_level)
else:
for index, row in data_tipo.iterrows():
distance_all = calculate_distance(row['latitude'], row['longitude'], data_tipo['latitude'].mean(), data_tipo['longitude'].mean())
if distance_all > max_distance_all:
max_distance_all = distance_all
# Calculate a zoom level based on the maximum distance of the entire dataset
zoom_level_all = round(15 - np.log10(max_distance_all))
# Slider for setting the zoom level based on the entire dataset
zoom_level = st.slider('Nível de zoom', min_value=1, max_value=15, value=zoom_level_all)
# Conditionally render the radius slider
if radius_visible:
radius_in_meters = st.slider('Selecione raio (em metros)', min_value=100, max_value=5000, value=1000)
# Initialize sliders variables
dorm_range = (int(data_tipo['Dorm'].min()), int(data_tipo['Dorm'].max()))
banho_range = (int(data_tipo['Banheiro'].min()), int(data_tipo['Banheiro'].max()))
vaga_range = (int(data_tipo['Vaga'].min()), int(data_tipo['Vaga'].max()))
# Add sliders to filter data based
atotal_range = st.slider('Área Total', float(data_tipo['Atotal'].min()), float(data_tipo['Atotal'].max()), (float(data_tipo['Atotal'].min()), float(data_tipo['Atotal'].max())), step=.1)
apriv_range = st.slider('Área Privativa', float(data_tipo['Apriv'].min()), float(data_tipo['Apriv'].max()), (float(data_tipo['Apriv'].min()), float(data_tipo['Apriv'].max())), step=.1)
if int(data_tipo['Dorm'].min()) != 0 and int(data_tipo['Dorm'].max()) != 0:
dorm_range = st.slider('Dormitórios', int(data_tipo['Dorm'].min()), int(data_tipo['Dorm'].max()), (int(data_tipo['Dorm'].min()), int(data_tipo['Dorm'].max())), step=1)
if int(data_tipo['Banheiro'].min()) != 0 and int(data_tipo['Banheiro'].max()) != 0:
banho_range = st.slider('Banheiros', int(data_tipo['Banheiro'].min()), int(data_tipo['Banheiro'].max()), (int(data_tipo['Banheiro'].min()), int(data_tipo['Banheiro'].max())), step=1)
if int(data_tipo['Vaga'].min()) != 0 and int(data_tipo['Vaga'].max()) != 0:
vaga_range = st.slider('Vaga de estacionamento', int(data_tipo['Vaga'].min()), int(data_tipo['Vaga'].max()), (int(data_tipo['Vaga'].min()), int(data_tipo['Vaga'].max())), step=1)
# Initialize checkbox variables
elev_checkbox = False
churr_checkbox = False
esq_checkbox = False
# Add checkboxes for dummy features
if int(data_tipo['Elevador'].min()) != 0 and int(data_tipo['Elevador'].max()) != 0:
elev_checkbox = st.checkbox('Elevador')
if int(data_tipo['Churrasq'].min()) != 0 and int(data_tipo['Churrasq'].max()) != 0:
churr_checkbox = st.checkbox('Churrasqueira')
if int(data_tipo['Lot_pos'].min()) != 0 and int(data_tipo['Lot_pos'].max()) != 0:
esq_checkbox = st.checkbox('Duas ou mais frentes')
# Transform checkbox values into 1s and 0s
elev_value = 1 if elev_checkbox else 0
churr_value = 1 if churr_checkbox else 0
esq_value = 1 if esq_checkbox else 0
data_tipo = data_tipo[(data_tipo['Atotal'].between(atotal_range[0], atotal_range[1])) &
(data_tipo['Apriv'].between(apriv_range[0], apriv_range[1])) &
(data_tipo['Dorm'].between(dorm_range[0], dorm_range[1])) &
(data_tipo['Banheiro'].between(banho_range[0], banho_range[1])) &
(data_tipo['Vaga'].between(vaga_range[0], vaga_range[1])) &
(data_tipo['Elevador'] == elev_value) &
(data_tipo['Churrasq'] == churr_value) &
(data_tipo['Lot_pos'] == esq_value)]
# Links to other apps at the bottom of the sidebar
st.sidebar.markdown(factor_html, unsafe_allow_html=True)
st.sidebar.markdown(evo_html, unsafe_allow_html=True)
# Filter data based on the radius
if selected_coords == 'Direcionada':
filtered_data = data_tipo[data_tipo.apply(lambda x: calculate_distance(x['latitude'], x['longitude'], custom_lat, custom_lon), axis=1) <= radius_in_meters]
filtered_data = filtered_data.dropna() # Drop rows with NaN values
# Add a custom CSS class to the map container
st.markdown(f"""<style>
.map {{
width: 100%;
height: 100vh;
}}
</style>""", unsafe_allow_html=True)
# Determine which area feature to use for prediction
filtered_data['area_feature'] = np.where(filtered_data['Apriv'] != 0, filtered_data['Apriv'], filtered_data['Atotal'])
# Check if KNN should be applied
if selected_coords == 'Direcionada' and radius_visible:
# Apply KNN and get predicted V_oferta values
predicted_V_oferta = knn_predict(filtered_data, 'V_oferta', ['latitude', 'longitude', 'area_feature']) # Update with your features
# Add predicted V_oferta values to filtered_data
filtered_data['Predicted_V_oferta'] = predicted_V_oferta
# Display the map and filtered_data
with st.container():
if selected_coords == 'Direcionada':
st.map(filtered_data, zoom=zoom_level, use_container_width=True)
elif selected_coords == 'Ampla':
st.map(data, zoom=zoom_level, use_container_width=True)
# Display the predicted V_oferta values if applicable
if 'Predicted_V_oferta' in filtered_data.columns:
st.write("Valores (R$/m²) previstos com algoritmo KNN:")
st.write(filtered_data[['latitude', 'longitude', 'V_oferta', 'Predicted_V_oferta']])