Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
from sklearn.neighbors import KNeighborsRegressor | |
from geopy.distance import geodesic | |
import googlemaps | |
from geopy.exc import GeocoderTimedOut | |
from streamlit_folium import st_folium | |
import folium | |
from branca.colormap import LinearColormap | |
import base64 | |
from io import BytesIO | |
import sys | |
import pydeck as pdk | |
from ydata_profiling import ProfileReport | |
import streamlit.components.v1 as components | |
# Print the Python version | |
print("Python version") | |
print(sys.version) | |
print("Version info.") | |
print(sys.version_info) | |
image1 = 'images/avalia-removebg-preview.png' | |
# Function to add heatmap layer to folium map | |
def add_heatmap_layer(map_obj, data, column_name, colormap_name, radius=15): | |
heat_data = data[['latitude', 'longitude', column_name]].dropna() | |
heat_layer = folium.FeatureGroup(name=f'Variável - {column_name}') | |
cmap = LinearColormap(colors=['blue', 'white', 'red'], vmin=heat_data[column_name].min(), vmax=heat_data[column_name].max()) | |
for index, row in heat_data.iterrows(): | |
folium.CircleMarker( | |
location=[row['latitude'], row['longitude']], | |
radius=radius, | |
fill=True, | |
fill_color=cmap(row[column_name]), | |
fill_opacity=0.5, | |
weight=0, | |
popup=f"{column_name}: {row[column_name]:.2f}" # Fix here | |
).add_to(heat_layer) | |
heat_layer.add_to(map_obj) | |
# Function to calculate distance in meters between two coordinates | |
def calculate_distance(lat1, lon1, lat2, lon2): | |
coords_1 = (lat1, lon1) | |
coords_2 = (lat2, lon2) | |
return geodesic(coords_1, coords_2).meters | |
def knn_predict(df, target_column, features_columns, k=5): | |
# Separate features and target variable | |
X = df[features_columns] | |
y = df[target_column] | |
# Check if there is enough data for prediction | |
if len(X) < k: | |
return np.zeros(len(X)) # Return an array of zeros if there isn't enough data | |
# Create KNN regressor | |
knn = KNeighborsRegressor(n_neighbors=k) | |
# Fit the model | |
knn.fit(X, y) | |
# Use the model to predict target_column for the filtered_data | |
predictions = knn.predict(df[features_columns]) | |
return predictions | |
# Set wide mode | |
st.set_page_config(layout="wide") | |
# Create a DataFrame with sample data | |
data = pd.read_excel('data_nexus.xlsx') | |
# Initialize variables to avoid NameError | |
radius_visible = True | |
custom_address_initial = 'Centro, Lajeado - RS, Brazil' # Initial custom address | |
#custom_lat = data['latitude'].median() | |
custom_lat = -29.45880114339262 | |
#custom_lon = data['longitude'].median() | |
custom_lon = -51.97011580843118 | |
radius_in_meters = 150000 | |
filtered_data = data # Initialize with the entire dataset | |
# Calculate a zoom level based on the maximum distance | |
zoom_level = 13 | |
# Create a sidebar for controls | |
with st.sidebar: | |
st.image(image1, width=200) | |
# Add a dropdown for filtering "Fonte" | |
selected_fonte = st.selectbox('Finalidade', data['Fonte'].unique(), index=data['Fonte'].unique().tolist().index('Venda')) | |
data = data[data['Fonte'] == selected_fonte] | |
# Add a dropdown for filtering "Tipo" | |
selected_tipo = st.selectbox('Tipo de imóvel', data['Tipo'].unique(), index=data['Tipo'].unique().tolist().index('Apartamento')) | |
data_tipo = data[data['Tipo'] == selected_tipo] | |
custom_address = st.text_input('Informe o endereço', custom_address_initial) | |
radius_visible = True # Show radius slider for custom coordinates | |
gmaps = googlemaps.Client(key='AIzaSyDoJ6C7NE2CHqFcaHTnhreOfgJeTk4uSH0') # Replace with your API key | |
try: | |
# Ensure custom_address ends with " - RS, Brazil" | |
custom_address = custom_address.strip() # Remove leading/trailing whitespaces | |
if not custom_address.endswith(" - RS, Brazil"): | |
custom_address += " - RS, Brazil" | |
location = gmaps.geocode(custom_address)[0]['geometry']['location'] | |
custom_lat, custom_lon = location['lat'], location['lng'] | |
except (IndexError, GeocoderTimedOut): | |
st.error("Erro: Não foi possível geocodificar o endereço fornecido. Por favor, verifique e tente novamente.") | |
# Conditionally render the radius slider | |
if radius_visible: | |
radius_in_meters = st.number_input('Selecione raio (em metros)', min_value=0, max_value=100000, value=2000) | |
# Add sliders to filter data based | |
#atotal_range = st.slider('Área Total', float(data_tipo['Atotal'].min()), float(data_tipo['Atotal'].max()), (float(data_tipo['Atotal'].min()), float(data_tipo['Atotal'].max())), step=.1 if data_tipo['Atotal'].min() != data_tipo['Atotal'].max() else 0.1) | |
#apriv_range = st.slider('Área Privativa', float(data_tipo['Apriv'].min()), float(data_tipo['Apriv'].max()), (float(data_tipo['Apriv'].min()), float(data_tipo['Apriv'].max())), step=.1 if data_tipo['Apriv'].min() != data_tipo['Apriv'].max() else 0.1) | |
# Create two columns for Área Total inputs | |
col1, col2 = st.columns(2) | |
with col1: | |
atotal_min = st.number_input('Área Total mínima', | |
min_value=float(data_tipo['Atotal'].min()), | |
max_value=float(data_tipo['Atotal'].max()), | |
value=float(data_tipo['Atotal'].min()), | |
step=0.1) | |
with col2: | |
atotal_max = st.number_input('Área Total máxima', | |
min_value=float(data_tipo['Atotal'].min()), | |
max_value=float(data_tipo['Atotal'].max()), | |
value=float(data_tipo['Atotal'].max()), | |
step=0.1) | |
# Create two columns for Área Privativa inputs | |
col3, col4 = st.columns(2) | |
with col3: | |
apriv_min = st.number_input('Área Privativa mínima', | |
min_value=float(data_tipo['Apriv'].min()), | |
max_value=float(data_tipo['Apriv'].max()), | |
value=float(data_tipo['Apriv'].min()), | |
step=0.1) | |
with col4: | |
apriv_max = st.number_input('Área Privativa máxima', | |
min_value=float(data_tipo['Apriv'].min()), | |
max_value=float(data_tipo['Apriv'].max()), | |
value=float(data_tipo['Apriv'].max()), | |
step=0.1) | |
#data_tipo = data_tipo[(data_tipo['Atotal'].between(atotal_range[0], atotal_range[1])) & | |
#(data_tipo['Apriv'].between(apriv_range[0], apriv_range[1]))] | |
data_tipo = data_tipo[(data_tipo['Atotal'].between(atotal_min, atotal_max)) & | |
(data_tipo['Apriv'].between(apriv_min, apriv_max))] | |
filtered_data = data_tipo[data_tipo.apply(lambda x: calculate_distance(x['latitude'], x['longitude'], custom_lat, custom_lon), axis=1) <= radius_in_meters] | |
filtered_data = filtered_data.dropna() # Drop rows with NaN values | |
# Add a custom CSS class to the map container | |
st.markdown(f"""<style> | |
.map {{ | |
width: 100%; | |
height: 100vh; | |
}} | |
</style>""", unsafe_allow_html=True) | |
# Determine which area feature to use for prediction | |
filtered_data['area_feature'] = np.where(filtered_data['Apriv'] != 0, filtered_data['Apriv'], filtered_data['Atotal']) | |
# Define the target column based on conditions | |
filtered_data['target_column'] = np.where(filtered_data['Vunit_priv'] != 0, filtered_data['Vunit_priv'], filtered_data['Vunit_total']) | |
# Apply KNN and get predicted target values | |
predicted_target = knn_predict(filtered_data, 'target_column', ['latitude', 'longitude', 'area_feature']) # Update with your features | |
# Add predicted target values to filtered_data | |
filtered_data['Predicted_target'] = predicted_target | |
# Set custom width for columns | |
tab1, tab2, tab3= st.tabs(["Mapa", "Planilha", "Análise dos Dados"]) | |
with tab1: | |
# Define a PyDeck view state for the initial map view | |
view_state = pdk.ViewState(latitude=filtered_data['latitude'].mean(), longitude=filtered_data['longitude'].mean(), zoom=zoom_level) | |
# Define a PyDeck layer for plotting | |
layer = pdk.Layer( | |
"ScatterplotLayer", | |
filtered_data, | |
get_position=["longitude", "latitude"], | |
get_color="[237, 181, 0, 160]", # RGBA color for light orange, adjust opacity with the last number | |
get_radius=100, # Adjust dot size as needed | |
) | |
# Create a PyDeck map using the defined layer and view state | |
deck_map = pdk.Deck(layers=[layer], initial_view_state=view_state, map_style="mapbox://styles/mapbox/light-v9") | |
# Display the map in Streamlit | |
st.pydeck_chart(deck_map) | |
#st.map(filtered_data, zoom=zoom_level, use_container_width=True) | |
with tab2: | |
st.write("Dados:", filtered_data) # Debug: Print filtered_data | |
if st.button('Baixar planilha'): | |
st.write("Preparando...") | |
# Set up the file to be downloaded | |
output_df = filtered_data | |
# Create a BytesIO buffer to hold the Excel file | |
excel_buffer = BytesIO() | |
# Convert DataFrame to Excel and save to the buffer | |
with pd.ExcelWriter(excel_buffer, engine="xlsxwriter") as writer: | |
output_df.to_excel(writer, index=False, sheet_name="Sheet1") | |
# Reset the buffer position to the beginning | |
excel_buffer.seek(0) | |
# Create a download link | |
b64 = base64.b64encode(excel_buffer.read()).decode() | |
href = f'<a href="data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64,{b64}" download="sample_data.xlsx">Clique aqui para baixar a planilha</a>' | |
#st.markdown(href, unsafe_allow_html=True) | |
# Use st.empty() to create a placeholder and update it with the link | |
download_placeholder = st.empty() | |
download_placeholder.markdown(href, unsafe_allow_html=True) | |
with tab3: | |
k_threshold = 5 | |
# Function to perform bootstrap on the predicted target values | |
def bootstrap_stats(bound_data, num_samples=1000): | |
# Reshape the predicted_target array | |
bound_data = np.array(bound_data).reshape(-1, 1) | |
# Bootstrap resampling | |
bootstrapped_means = [] | |
for _ in range(num_samples): | |
bootstrap_sample = np.random.choice(bound_data.flatten(), len(bound_data), replace=True) | |
bootstrapped_means.append(np.mean(bootstrap_sample)) | |
# Calculate lower and higher bounds | |
lower_bound = np.percentile(bootstrapped_means, 16.) | |
higher_bound = np.percentile(bootstrapped_means, 84.) | |
return lower_bound, higher_bound | |
# Apply KNN and get predicted Predicted_target values | |
predicted_target = knn_predict(filtered_data, 'Predicted_target', ['latitude', 'longitude', 'area_feature']) | |
# Check if there are predictions to display | |
if 'Predicted_target' in filtered_data.columns and not np.all(predicted_target == 0): | |
# Apply bootstrap - bounds | |
lower_bound, higher_bound = bootstrap_stats(filtered_data['target_column']) | |
mean_value = np.mean(filtered_data['Predicted_target']) | |
# Display the results with custom styling | |
st.markdown("## **Algoritmo KNN (K-nearest neighbors)**") | |
st.write(f"Valor médio (Reais/m²) para as características selecionadas: ${mean_value:.2f}$ Reais") | |
st.write(f"Os valores podem variar entre ${lower_bound:.2f}$ e ${higher_bound:.2f}$ Reais, dependendo das características dos imóveis.") | |
else: | |
st.warning(f"**Dados insuficientes para inferência do valor. Mínimo necessário:** {k_threshold}") | |
# CSS para alterar as cores | |
custom_css = """ | |
<style> | |
.variable-title { | |
color: #FFD700; /* Amarelo Ouro */ | |
} | |
.tab-title { | |
color: #FFD700; /* Amarelo Ouro */ | |
} | |
/* Adicione mais seletores conforme necessário */ | |
</style> | |
""" | |
# Injeta o CSS na página | |
st.markdown(custom_css, unsafe_allow_html=True) | |
# Generate the profile report | |
with st.spinner('Carregando análise...'): | |
profile = ProfileReport(filtered_data, title="Análise Exploratória dos Dados", explorative=True) | |
print(profile.config.json(indent=4)) | |
profile.config.html.style.primary_colors = ['#FFD700', '#FFD700', '#FFD700'] # Define todas as cores primárias para amarelo ouro | |
profile_html = profile.to_html() | |
profile_html = custom_css + profile_html | |
# Replace English text with Portuguese | |
profile_html = profile_html.replace("Overview", "Visão geral") | |
profile_html = profile_html.replace("Alerts", "Alertas") | |
profile_html = profile_html.replace("Reproduction", "Reprodução") | |
profile_html = profile_html.replace("Dataset statistics", "Estatísticas do conjunto de dados") | |
profile_html = profile_html.replace("Variable types", "Tipos de variáveis") | |
profile_html = profile_html.replace("Variables", "Variáveis") | |
profile_html = profile_html.replace("Interactions", "Interações") | |
profile_html = profile_html.replace("Correlations", "Correlações") | |
profile_html = profile_html.replace("Missing values", "Valores faltantes") | |
profile_html = profile_html.replace("Sample", "Amostra") | |
profile_html = profile_html.replace("Number of variables", "Número de variáveis") | |
profile_html = profile_html.replace("Number of observations", "Número de observações") | |
profile_html = profile_html.replace("Missing cells", "Células faltantes") | |
profile_html = profile_html.replace("Missing cells (%)", "Células faltantes (%)") | |
profile_html = profile_html.replace("Duplicate rows", "Linhas duplicadas") | |
profile_html = profile_html.replace("Duplicate rows (%)", "Linhas duplicadas (%)") | |
profile_html = profile_html.replace("Total size in memory", "Tamanho total na memória") | |
profile_html = profile_html.replace("Average record size in memory", "Tamanho médio do registro na memória") | |
profile_html = profile_html.replace("Text", "Texto") | |
profile_html = profile_html.replace("Numeric", "Numérico") | |
profile_html = profile_html.replace("Categorical", "Categórico") | |
profile_html = profile_html.replace("Distinct", "Distinto") | |
profile_html = profile_html.replace("Distinct (%)", "Distinto (%)") | |
profile_html = profile_html.replace("Missing", "Faltando") | |
profile_html = profile_html.replace("Missing (%)", "Faltando (%)") | |
profile_html = profile_html.replace("Memory size", "Tamanho da memória") | |
profile_html = profile_html.replace("Real number", "Número real") | |
profile_html = profile_html.replace("Infinite", "Infinito") | |
profile_html = profile_html.replace("Infinite (%)", "Infinito (%)") | |
profile_html = profile_html.replace("Mean", "Média") | |
profile_html = profile_html.replace("Minimum", "Mínimo") | |
profile_html = profile_html.replace("Maximum", "Máximo") | |
profile_html = profile_html.replace("Zeros", "Zeros") | |
profile_html = profile_html.replace("Zeros (%)", "Zeros (%)") | |
profile_html = profile_html.replace("Negative", "Negativo") | |
profile_html = profile_html.replace("Negative (%)", "Negativo (%)") | |
profile_html = profile_html.replace("Other values (2)", "Outros valores (2)") | |
profile_html = profile_html.replace("Link", "Link") | |
profile_html = profile_html.replace("UNIQUE", "ÚNICO") | |
profile_html = profile_html.replace("CONSTANT", "CONSTANTE") | |
profile_html = profile_html.replace("Average", "Média") | |
profile_html = profile_html.replace("Number of rows", "Número de linhas") | |
profile_html = profile_html.replace("Distinct values", "Valores distintos") | |
profile_html = profile_html.replace("Histogram", "Histograma") | |
profile_html = profile_html.replace("Top", "Top") | |
profile_html = profile_html.replace("Bottom", "Inferior") | |
profile_html = profile_html.replace("Frequency", "Frequência") | |
profile_html = profile_html.replace("has constant value", "tem valores constantes") | |
profile_html = profile_html.replace("has unique value", "tem valores únicos") | |
profile_html = profile_html.replace("Analysis started", "Início da análise") | |
profile_html = profile_html.replace("Analysis finished", "Término da análise") | |
profile_html = profile_html.replace("Duration", "Duração") | |
profile_html = profile_html.replace("Software version", "Versão do software") | |
profile_html = profile_html.replace("Download configuration", "Configuração para download") | |
profile_html = profile_html.replace("Select Columns", "Selecione coluna") | |
profile_html = profile_html.replace("Length", "Comprimento") | |
profile_html = profile_html.replace("Max length", "Comprimento máximo") | |
profile_html = profile_html.replace("Median length", "Comprimento mediano") | |
profile_html = profile_html.replace("Mean length", "Comprimento médio") | |
profile_html = profile_html.replace("Min length", "Comprimento mínimo") | |
profile_html = profile_html.replace("Characters and Unicode", "Caracteres e Unicode") | |
profile_html = profile_html.replace("Total characters", "Total de caracteres") | |
profile_html = profile_html.replace("Distinct characters", "Caracteres distintos") | |
profile_html = profile_html.replace("Distinct categories", "Categorias distintas") | |
profile_html = profile_html.replace("Distinct scripts", "Scripts distintos") | |
profile_html = profile_html.replace("Distinct blocks", "Blocos distintos") | |
profile_html = profile_html.replace("The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.", "O Padrão Unicode atribui propriedades de caracteres a cada ponto de código, que podem ser usados para analisar variáveis textuais.") | |
profile_html = profile_html.replace("Unique", "Único") | |
profile_html = profile_html.replace("Unique (%)", "Único (%)") | |
profile_html = profile_html.replace("Words", "Palavras") | |
profile_html = profile_html.replace("Characters", "Caracteres") | |
profile_html = profile_html.replace("Most occurring characters", "Caracteres mais frequentes") | |
profile_html = profile_html.replace("Categories", "Categorias") | |
profile_html = profile_html.replace("Most occurring categories", "Categorias mais frequentes") | |
profile_html = profile_html.replace("(unknown)", "(desconhecido)") | |
profile_html = profile_html.replace("Most frequent character per category", "Caractere mais frequente por categoria") | |
profile_html = profile_html.replace("Scripts", "Scripts") | |
profile_html = profile_html.replace("Most occurring scripts", "Scripts mais frequentes") | |
profile_html = profile_html.replace("Most frequent character per script", "Caractere mais frequente por script") | |
profile_html = profile_html.replace("Blocks", "Blocos") | |
profile_html = profile_html.replace("Most occurring blocks", "Blocos mais frequentes") | |
profile_html = profile_html.replace("Frequency (%)", "Frequência (%)") | |
profile_html = profile_html.replace("Most frequent character per block", "Caractere mais frequente por bloco") | |
profile_html = profile_html.replace("Matrix", "Matriz") | |
profile_html = profile_html.replace("First rows", "Primeiras linhas") | |
profile_html = profile_html.replace("Last rows", "Últimas linhas") | |
profile_html = profile_html.replace("More details", "Maior detalhamento") | |
profile_html = profile_html.replace("Statistics", "Estatísticas") | |
profile_html = profile_html.replace("Quantile statistics", "Estatísticas de quantis") | |
profile_html = profile_html.replace("Common values", "Valores comuns") | |
profile_html = profile_html.replace("Extreme values", "Valores extremos") | |
profile_html = profile_html.replace("5-th percentile", "5º percentil") | |
profile_html = profile_html.replace("median", "mediana") | |
profile_html = profile_html.replace("95-th percentile", "95º percentil") | |
profile_html = profile_html.replace("Range", "Intervalo") | |
profile_html = profile_html.replace("Interquartile range (IQR)", "Intervalo Interquartil") | |
profile_html = profile_html.replace("Descriptive statistics", "Estatísticas descritivas") | |
profile_html = profile_html.replace("Standard deviation", "Desvio padrão") | |
profile_html = profile_html.replace("Coefficient of variation (CV)", "Coeficiente de variação (CV)") | |
profile_html = profile_html.replace("Kurtosis", "Curtose") | |
profile_html = profile_html.replace("Median Absolute Deviation (MAD)", "Desvio Absoluto Mediano (MAD)") | |
profile_html = profile_html.replace("Skewness", "Assimetria") | |
profile_html = profile_html.replace("Sum", "Soma") | |
profile_html = profile_html.replace("Variance", "Variância") | |
profile_html = profile_html.replace("Monotonicity", "Monotonicidade") | |
profile_html = profile_html.replace("Not monotonic", "Não monotônica") | |
profile_html = profile_html.replace("Histogram with fixed size bins (bins=16)", "Histograma com intervalos de tamanho fixo (intervalos=16)") | |
profile_html = profile_html.replace("Minimum 10 values", "Mínimo 10 valores") | |
profile_html = profile_html.replace("Maximum 10 values", "Máximo 10 valores") | |
profile_html = profile_html.replace("1st row", "1ª linha") | |
profile_html = profile_html.replace("2nd row", "2ª linha") | |
profile_html = profile_html.replace("3rd row", "3ª linha") | |
profile_html = profile_html.replace("4th row", "4ª linha") | |
profile_html = profile_html.replace("5th row", "5ª linha") | |
# Display the modified HTML in Streamlit | |
components.html(profile_html, height=600, scrolling=True) | |