Spaces:
Sleeping
Sleeping
fschwartzer
commited on
Commit
·
897ea2d
1
Parent(s):
b3053e9
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import streamlit as st
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
import openpyxl
|
|
|
5 |
from geopy.distance import geodesic
|
6 |
|
7 |
# Set wide mode
|
@@ -83,4 +84,41 @@ st.markdown(f"""<style>
|
|
83 |
|
84 |
# Wrap the map in a container with the custom CSS class
|
85 |
with st.container():
|
86 |
-
st.map(filtered_data, zoom=zoom_level, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
import openpyxl
|
5 |
+
from sklearn.neighbors import KNeighborsRegressor
|
6 |
from geopy.distance import geodesic
|
7 |
|
8 |
# Set wide mode
|
|
|
84 |
|
85 |
# Wrap the map in a container with the custom CSS class
|
86 |
with st.container():
|
87 |
+
st.map(filtered_data, zoom=zoom_level, use_container_width=True)
|
88 |
+
|
89 |
+
# Function to apply KNN and return Vunit values
|
90 |
+
def knn_predict(df, target_column, features_columns, k=5):
|
91 |
+
# Separate features and target variable
|
92 |
+
X = df[features_columns]
|
93 |
+
y = df[target_column]
|
94 |
+
|
95 |
+
# Create KNN regressor
|
96 |
+
knn = KNeighborsRegressor(n_neighbors=k)
|
97 |
+
|
98 |
+
# Fit the model
|
99 |
+
knn.fit(X, y)
|
100 |
+
|
101 |
+
# Use the model to predict Vunit for the filtered_data
|
102 |
+
predictions = knn.predict(filtered_data[features_columns])
|
103 |
+
|
104 |
+
return predictions
|
105 |
+
|
106 |
+
# Features columns for KNN
|
107 |
+
knn_features = ['latitude', 'longitude', 'Area'] # Add other relevant features
|
108 |
+
|
109 |
+
# Check if KNN should be applied
|
110 |
+
if selected_coords == 'Custom' and radius_visible:
|
111 |
+
# Apply KNN and get predicted Vunit values
|
112 |
+
predicted_vunit = knn_predict(data, 'Vunit', knn_features)
|
113 |
+
|
114 |
+
# Add predicted Vunit values to filtered_data
|
115 |
+
filtered_data['Predicted_Vunit'] = predicted_vunit
|
116 |
+
|
117 |
+
# Display the map and filtered_data
|
118 |
+
with st.container():
|
119 |
+
st.map(filtered_data, zoom=zoom_level, use_container_width=True)
|
120 |
+
|
121 |
+
# Display the predicted Vunit values if applicable
|
122 |
+
if 'Predicted_Vunit' in filtered_data.columns:
|
123 |
+
st.write("Predicted Vunit Values:")
|
124 |
+
st.write(filtered_data[['latitude', 'longitude', 'Vunit', 'Predicted_Vunit']])
|