Spaces:
Sleeping
Sleeping
fschwartzer
commited on
Commit
·
f573577
1
Parent(s):
375ee24
Update app.py
Browse files
app.py
CHANGED
@@ -12,7 +12,7 @@ def calculate_distance(lat1, lon1, lat2, lon2):
|
|
12 |
coords_2 = (lat2, lon2)
|
13 |
return geodesic(coords_1, coords_2).meters
|
14 |
|
15 |
-
# Function to apply KNN and return
|
16 |
def knn_predict(df, target_column, features_columns, k=5):
|
17 |
# Separate features and target variable
|
18 |
X = df[features_columns]
|
@@ -24,7 +24,7 @@ def knn_predict(df, target_column, features_columns, k=5):
|
|
24 |
# Fit the model
|
25 |
knn.fit(X, y)
|
26 |
|
27 |
-
# Use the model to predict
|
28 |
predictions = knn.predict(df[features_columns])
|
29 |
|
30 |
return predictions
|
@@ -56,8 +56,9 @@ st.markdown(
|
|
56 |
unsafe_allow_html=True
|
57 |
)
|
58 |
|
|
|
59 |
# Create a DataFrame with sample data
|
60 |
-
data = pd.read_excel('
|
61 |
|
62 |
# Initialize variables to avoid NameError
|
63 |
selected_coords = 'Direcionada'
|
@@ -80,7 +81,7 @@ zoom_level = round(17 - np.log10(max_distance))
|
|
80 |
|
81 |
# Set font to 'Quicksand' for title_html
|
82 |
title_html = """
|
83 |
-
|
84 |
@font-face {font-family: 'Quicksand';
|
85 |
src: url('font/Quicksand-VariableFont_wght.ttf') format('truetype');
|
86 |
}
|
@@ -91,7 +92,7 @@ title_html = """
|
|
91 |
<span style='color: gray; font-size: 50px;'>aval</span>
|
92 |
<span style='color: white; font-size: 50px;'>ia</span>
|
93 |
<span style='color: gray; font-size: 50px;'>.NEXUS</span>
|
94 |
-
"""
|
95 |
|
96 |
# Set font to 'Quicksand' for factor_html
|
97 |
factor_html = """
|
@@ -131,6 +132,9 @@ with st.sidebar:
|
|
131 |
#st.title('avalia.se')
|
132 |
|
133 |
st.sidebar.markdown(title_html, unsafe_allow_html=True)
|
|
|
|
|
|
|
134 |
|
135 |
selected_coords = st.selectbox('Selecione o tipo de pesquisa', ['Ampla', 'Direcionada'])
|
136 |
|
@@ -193,10 +197,10 @@ st.markdown(f"""<style>
|
|
193 |
|
194 |
# Check if KNN should be applied
|
195 |
if selected_coords == 'Direcionada' and radius_visible:
|
196 |
-
# Apply KNN and get predicted
|
197 |
-
|
198 |
-
# Add predicted
|
199 |
-
filtered_data['
|
200 |
|
201 |
# Display the map and filtered_data
|
202 |
with st.container():
|
@@ -205,7 +209,7 @@ with st.container():
|
|
205 |
elif selected_coords == 'Ampla':
|
206 |
st.map(data, zoom=zoom_level, use_container_width=True)
|
207 |
|
208 |
-
# Display the predicted
|
209 |
-
if '
|
210 |
st.write("Valores (R$/m²) previstos com algoritmo KNN:")
|
211 |
-
st.write(filtered_data[['latitude', 'longitude', '
|
|
|
12 |
coords_2 = (lat2, lon2)
|
13 |
return geodesic(coords_1, coords_2).meters
|
14 |
|
15 |
+
# Function to apply KNN and return V_oferta values
|
16 |
def knn_predict(df, target_column, features_columns, k=5):
|
17 |
# Separate features and target variable
|
18 |
X = df[features_columns]
|
|
|
24 |
# Fit the model
|
25 |
knn.fit(X, y)
|
26 |
|
27 |
+
# Use the model to predict V_oferta for the filtered_data
|
28 |
predictions = knn.predict(df[features_columns])
|
29 |
|
30 |
return predictions
|
|
|
56 |
unsafe_allow_html=True
|
57 |
)
|
58 |
|
59 |
+
|
60 |
# Create a DataFrame with sample data
|
61 |
+
data = pd.read_excel('ven_fim_PEDÓ_nov_23.xlsx)
|
62 |
|
63 |
# Initialize variables to avoid NameError
|
64 |
selected_coords = 'Direcionada'
|
|
|
81 |
|
82 |
# Set font to 'Quicksand' for title_html
|
83 |
title_html = """
|
84 |
+
<style>
|
85 |
@font-face {font-family: 'Quicksand';
|
86 |
src: url('font/Quicksand-VariableFont_wght.ttf') format('truetype');
|
87 |
}
|
|
|
92 |
<span style='color: gray; font-size: 50px;'>aval</span>
|
93 |
<span style='color: white; font-size: 50px;'>ia</span>
|
94 |
<span style='color: gray; font-size: 50px;'>.NEXUS</span>
|
95 |
+
"""
|
96 |
|
97 |
# Set font to 'Quicksand' for factor_html
|
98 |
factor_html = """
|
|
|
132 |
#st.title('avalia.se')
|
133 |
|
134 |
st.sidebar.markdown(title_html, unsafe_allow_html=True)
|
135 |
+
|
136 |
+
# Add a dropdown for filtering "Tipo"
|
137 |
+
selected_tipo = st.selectbox('Filtrar por Tipo', data['Tipo'].unique())
|
138 |
|
139 |
selected_coords = st.selectbox('Selecione o tipo de pesquisa', ['Ampla', 'Direcionada'])
|
140 |
|
|
|
197 |
|
198 |
# Check if KNN should be applied
|
199 |
if selected_coords == 'Direcionada' and radius_visible:
|
200 |
+
# Apply KNN and get predicted V_oferta values
|
201 |
+
predicted_V_oferta = knn_predict(filtered_data, 'V_oferta', ['latitude', 'longitude', 'Area']) # Update with your features
|
202 |
+
# Add predicted V_oferta values to filtered_data
|
203 |
+
filtered_data['Predicted_V_oferta'] = predicted_V_oferta
|
204 |
|
205 |
# Display the map and filtered_data
|
206 |
with st.container():
|
|
|
209 |
elif selected_coords == 'Ampla':
|
210 |
st.map(data, zoom=zoom_level, use_container_width=True)
|
211 |
|
212 |
+
# Display the predicted V_oferta values if applicable
|
213 |
+
if 'Predicted_V_oferta' in filtered_data.columns:
|
214 |
st.write("Valores (R$/m²) previstos com algoritmo KNN:")
|
215 |
+
st.write(filtered_data[['latitude', 'longitude', 'V_oferta', 'Predicted_V_oferta']])
|