Spaces:
Sleeping
Sleeping
fschwartzer
commited on
Commit
•
fff8af2
1
Parent(s):
fd31ef9
Update app.py
Browse files
app.py
CHANGED
@@ -68,12 +68,16 @@ with st.sidebar:
|
|
68 |
if radius_visible:
|
69 |
radius_in_meters = st.slider('Selecione raio (em metros)', min_value=100, max_value=5000, value=1000)
|
70 |
|
71 |
-
|
72 |
-
|
73 |
filtered_data = data[data.apply(lambda x: calculate_distance(x['latitude'], x['longitude'], custom_lat, custom_lon), axis=1) <= radius_in_meters]
|
74 |
-
filtered_data = filtered_data.dropna()
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
77 |
|
78 |
|
79 |
# Add a custom CSS class to the map container
|
|
|
68 |
if radius_visible:
|
69 |
radius_in_meters = st.slider('Selecione raio (em metros)', min_value=100, max_value=5000, value=1000)
|
70 |
|
71 |
+
if selected_coords == 'Custom' and radius_visible:
|
72 |
+
# Filter data based on the radius and drop NaN values
|
73 |
filtered_data = data[data.apply(lambda x: calculate_distance(x['latitude'], x['longitude'], custom_lat, custom_lon), axis=1) <= radius_in_meters]
|
74 |
+
filtered_data = filtered_data.dropna()
|
75 |
+
|
76 |
+
# Apply KNN and get predicted Vunit values
|
77 |
+
predicted_vunit = knn_predict(filtered_data, 'Vunit', knn_features)
|
78 |
+
|
79 |
+
# Add predicted Vunit values to filtered_data
|
80 |
+
filtered_data['Predicted_Vunit'] = predicted_vunit
|
81 |
|
82 |
|
83 |
# Add a custom CSS class to the map container
|