import streamlit as st import pandas as pd import numpy as np from sklearn.neighbors import KNeighborsRegressor from geopy.distance import geodesic import googlemaps from geopy.exc import GeocoderTimedOut from streamlit_folium import st_folium import folium from branca.colormap import LinearColormap import base64 from io import BytesIO import sys import pydeck as pdk from ydata_profiling import ProfileReport import streamlit.components.v1 as components from folium.plugins import MarkerCluster from sklearn.neighbors import NearestNeighbors # Set wide mode st.set_page_config(layout="wide") # Print the Python version print("Python version") print(sys.version) print("Version info.") print(sys.version_info) image1 = 'images/avalia-removebg-preview.png' css_file = "style.css" # Abrindo e lendo o arquivo CSS with open(css_file, "r") as css: css_style = css.read() st.markdown(f'', unsafe_allow_html=True) # Function to add heatmap layer to folium map def add_heatmap_layer(map_obj, data, column_name, colormap_name, radius=15): heat_data = data[['latitude', 'longitude', column_name]].dropna() heat_layer = folium.FeatureGroup(name=f'Variável - {column_name}') cmap = LinearColormap(colors=['blue', 'white', 'red'], vmin=heat_data[column_name].min(), vmax=heat_data[column_name].max()) for index, row in heat_data.iterrows(): folium.CircleMarker( location=[row['latitude'], row['longitude']], radius=radius, fill=True, fill_color=cmap(row[column_name]), fill_opacity=0.5, weight=0, popup=f"{column_name}: {row[column_name]:.2f}" # Fix here ).add_to(heat_layer) heat_layer.add_to(map_obj) # Function to calculate distance in meters between two coordinates def calculate_distance(lat1, lon1, lat2, lon2): coords_1 = (lat1, lon1) coords_2 = (lat2, lon2) return geodesic(coords_1, coords_2).meters def knn_predict(df, target_column, features_columns, k=5): # Separate features and target variable X = df[features_columns] y = df[target_column] # Check if there is enough data for prediction if len(X) < k: return np.zeros(len(X)) # Return an array of zeros if there isn't enough data # Create KNN regressor knn = KNeighborsRegressor(n_neighbors=k) # Fit the model knn.fit(X, y) # Use the model to predict target_column for the filtered_data predictions = knn.predict(df[features_columns]) return predictions # Create a DataFrame with sample data data = pd.read_excel('data_nexus.xlsx') # Initialize variables to avoid NameError radius_visible = True custom_address_initial = 'Centro, Lajeado - RS, Brazil' # Initial custom address #custom_lat = data['latitude'].median() custom_lat = -29.45880114339262 #custom_lon = data['longitude'].median() custom_lon = -51.97011580843118 radius_in_meters = 150000 filtered_data = data # Initialize with the entire dataset # Calculate a zoom level based on the maximum distance zoom_level = 13 # Create a sidebar for controls with st.sidebar: st.markdown(f'', unsafe_allow_html=True) st.image(image1, width=200) # Add a dropdown for filtering "Fonte" selected_fonte = st.selectbox('Finalidade', data['Fonte'].unique(), index=data['Fonte'].unique().tolist().index('Venda')) data = data[data['Fonte'] == selected_fonte] # Add a dropdown for filtering "Tipo" selected_tipo = st.selectbox('Tipo de imóvel', data['Tipo'].unique(), index=data['Tipo'].unique().tolist().index('Apartamento')) data_tipo = data[data['Tipo'] == selected_tipo] custom_address = st.text_input('Informe o endereço', custom_address_initial) radius_visible = True # Show radius slider for custom coordinates gmaps = googlemaps.Client(key='AIzaSyDoJ6C7NE2CHqFcaHTnhreOfgJeTk4uSH0') # Replace with your API key try: # Ensure custom_address ends with " - RS, Brazil" custom_address = custom_address.strip() # Remove leading/trailing whitespaces if not custom_address.endswith(" - RS, Brazil"): custom_address += " - RS, Brazil" location = gmaps.geocode(custom_address)[0]['geometry']['location'] custom_lat, custom_lon = location['lat'], location['lng'] except (IndexError, GeocoderTimedOut): st.error("Erro: Não foi possível geocodificar o endereço fornecido. Por favor, verifique e tente novamente.") # Conditionally render the radius slider if radius_visible: radius_in_meters = st.number_input('Selecione raio (em metros)', min_value=0, max_value=100000, value=2000) # Add sliders to filter data based #atotal_range = st.slider('Área Total', float(data_tipo['Atotal'].min()), float(data_tipo['Atotal'].max()), (float(data_tipo['Atotal'].min()), float(data_tipo['Atotal'].max())), step=.1 if data_tipo['Atotal'].min() != data_tipo['Atotal'].max() else 0.1) #apriv_range = st.slider('Área Privativa', float(data_tipo['Apriv'].min()), float(data_tipo['Apriv'].max()), (float(data_tipo['Apriv'].min()), float(data_tipo['Apriv'].max())), step=.1 if data_tipo['Apriv'].min() != data_tipo['Apriv'].max() else 0.1) # Create two columns for Área Total inputs col1, col2 = st.columns(2) with col1: atotal_min = st.number_input('Área Total mínima', min_value=float(data_tipo['Atotal'].min()), max_value=float(data_tipo['Atotal'].max()), value=float(data_tipo['Atotal'].min()), step=0.1) with col2: atotal_max = st.number_input('Área Total máxima', min_value=float(data_tipo['Atotal'].min()), max_value=float(data_tipo['Atotal'].max()), value=float(data_tipo['Atotal'].max()), step=0.1) # Create two columns for Área Privativa inputs col3, col4 = st.columns(2) with col3: apriv_min = st.number_input('Área Privativa mínima', min_value=float(data_tipo['Apriv'].min()), max_value=float(data_tipo['Apriv'].max()), value=float(data_tipo['Apriv'].min()), step=0.1) with col4: apriv_max = st.number_input('Área Privativa máxima', min_value=float(data_tipo['Apriv'].min()), max_value=float(data_tipo['Apriv'].max()), value=float(data_tipo['Apriv'].max()), step=0.1) #data_tipo = data_tipo[(data_tipo['Atotal'].between(atotal_range[0], atotal_range[1])) & #(data_tipo['Apriv'].between(apriv_range[0], apriv_range[1]))] data_tipo = data_tipo[(data_tipo['Atotal'].between(atotal_min, atotal_max)) & (data_tipo['Apriv'].between(apriv_min, apriv_max))] filtered_data = data_tipo[data_tipo.apply(lambda x: calculate_distance(x['latitude'], x['longitude'], custom_lat, custom_lon), axis=1) <= radius_in_meters] filtered_data = filtered_data.dropna() # Drop rows with NaN values # Add a custom CSS class to the map container st.markdown(f"""""", unsafe_allow_html=True) # Determine which area feature to use for prediction filtered_data['area_feature'] = np.where(filtered_data['Apriv'] != 0, filtered_data['Apriv'], filtered_data['Atotal']) # Define the target column based on conditions filtered_data['target_column'] = np.where(filtered_data['Vunit_priv'] != 0, filtered_data['Vunit_priv'], filtered_data['Vunit_total']) # Apply KNN and get predicted target values predicted_target = knn_predict(filtered_data, 'target_column', ['latitude', 'longitude', 'area_feature']) # Update with your features # Add predicted target values to filtered_data filtered_data['Predicted_target'] = predicted_target # Set custom width for columns tab1, tab2, tab3, tab4 = st.tabs(["Mapa", "Planilha", "Análise dos Dados", "Regressão Linear"]) with tab1: st.markdown(f'', unsafe_allow_html=True) # Define a PyDeck view state for the initial map view view_state = pdk.ViewState(latitude=filtered_data['latitude'].mean(), longitude=filtered_data['longitude'].mean(), zoom=zoom_level) # Define a PyDeck layer for plotting layer = pdk.Layer( "ScatterplotLayer", filtered_data, get_position=["longitude", "latitude"], get_color="[237, 181, 0, 160]", # RGBA color for light orange, adjust opacity with the last number get_radius=100, # Adjust dot size as needed ) # Create a PyDeck map using the defined layer and view state deck_map = pdk.Deck(layers=[layer], initial_view_state=view_state, map_style="mapbox://styles/mapbox/light-v9") # Display the map in Streamlit st.pydeck_chart(deck_map) #st.map(filtered_data, zoom=zoom_level, use_container_width=True) with tab2: st.markdown(f'', unsafe_allow_html=True) st.write("Dados:", filtered_data) # Debug: Print filtered_data if st.button('Baixar planilha'): st.write("Preparando...") # Set up the file to be downloaded output_df = filtered_data # Create a BytesIO buffer to hold the Excel file excel_buffer = BytesIO() # Convert DataFrame to Excel and save to the buffer with pd.ExcelWriter(excel_buffer, engine="xlsxwriter") as writer: output_df.to_excel(writer, index=False, sheet_name="Sheet1") # Reset the buffer position to the beginning excel_buffer.seek(0) # Create a download link b64 = base64.b64encode(excel_buffer.read()).decode() href = f'Clique aqui para baixar a planilha' #st.markdown(href, unsafe_allow_html=True) # Use st.empty() to create a placeholder and update it with the link download_placeholder = st.empty() download_placeholder.markdown(href, unsafe_allow_html=True) with tab3: st.markdown(f'', unsafe_allow_html=True) # Parâmetro para o número de vizinhos k_neighbors = 5 # Função para prever valores usando KNN e retornar os vizinhos mais próximos def knn_predict(data, target_column, feature_columns, k=5): knn = NearestNeighbors(n_neighbors=k) knn.fit(data[feature_columns]) distances, indices = knn.kneighbors(data[feature_columns]) # Calcular a média dos vizinhos como valor predito predicted_target = [] for i in range(len(data)): neighbors_targets = data.iloc[indices[i]][target_column] predicted_target.append(neighbors_targets.mean()) return np.array(predicted_target), distances, indices # Aplicar KNN e obter valores e índices dos vizinhos mais próximos predicted_target, distances, indices = knn_predict(filtered_data, 'target_column', ['latitude', 'longitude'], k=k_neighbors) # Adicionar coluna dos valores preditos ao DataFrame filtered_data['Predicted_target'] = predicted_target # Verifica se há previsões para exibir if 'Predicted_target' in filtered_data.columns and not np.all(predicted_target == 0): # Escolher a primeira coordenada para pesquisa coord_pesquisa = [filtered_data.iloc[0]['latitude'], filtered_data.iloc[0]['longitude']] valor_pesquisa = filtered_data.iloc[0]['Predicted_target'] # Criar o mapa centralizado na coordenada pesquisada com um nível de zoom mais próximo mapa = folium.Map(location=coord_pesquisa, zoom_start=18) marker_cluster = MarkerCluster().add_to(mapa) # Adicionar marcador para a coordenada de pesquisa com o valor previsto folium.Marker( coord_pesquisa, popup=f"Local de Pesquisa
Valor Previsto: {valor_pesquisa:.2f}", icon=folium.Icon(color="red", icon="info-sign") ).add_to(marker_cluster) # Iterar pelos 5 pontos mais próximos e conectar os vizinhos à coordenada de pesquisa for neighbor_idx in indices[0]: # Usar apenas os 5 vizinhos mais próximos da primeira coordenada neighbor_row = filtered_data.iloc[neighbor_idx] coord_vizinho = [neighbor_row['latitude'], neighbor_row['longitude']] valor_previsto = neighbor_row['Predicted_target'] valor_observado = neighbor_row['target_column'] # Adicionar marcadores para os vizinhos com informações de valor previsto e observado folium.Marker( coord_vizinho, popup=(f"Vizinho
Valor Previsto: {valor_previsto:.2f}
" f"Valor Observado: {valor_observado:.2f}"), icon=folium.Icon(color="blue", icon="info-sign") ).add_to(marker_cluster) # Adicionar linha de conexão entre a coordenada de pesquisa e o vizinho folium.PolyLine([coord_pesquisa, coord_vizinho], color='blue', weight=2).add_to(mapa) # Exibir o mapa no Streamlit st.markdown("## **Mapa dos 5 Vizinhos mais Próximos (KNN)**") st.write("O mapa mostra os 5 pontos de dados mais próximos ao ponto de pesquisa, com informações de valores previstos e observados.") st.components.v1.html(mapa._repr_html_(), height=500) else: st.warning(f"**Dados insuficientes para inferência do valor. Mínimo necessário:** {k_threshold}") with tab4: st.markdown(f'', unsafe_allow_html=True) components.iframe("https://davidsb-avalia-se-rl-tabs.hf.space", height=600, scrolling=True)